Skip to main content
Log in

Chemical–Mechanical Polishing of Cemented Carbide Insert Surface for Extended Tool Life in Turning of GH4169 Nickel-Based Superalloy

  • Regular Paper
  • Published:
International Journal of Precision Engineering and Manufacturing Aims and scope Submit manuscript

Abstract

To extend the tool life of conventional uncoated grinding cemented carbide inserts (CUG inserts) in turning GH4169 nickel-based superalloy, chemical–mechanical polishing (CMP) is applied to appropriately treat the rake face of the CUG insert to address the defects including grinding burn, crack, and thermal deformation. The material removal rate (MRR) and the rake face roughness Ra of YG10 chemical–mechanical polished cemented carbide inserts (CMP inserts) corresponding to the six types of abrasives particles are investigated by applying the single factor method, and the diamond powder is the most suitable to polish YG10 inserts. Thus, CMP parameters are optimized using Taguchi method coupled with both the grey relation analysis and fuzzy inference. Furthermore, the comparison experiments of the cutting performance of the CUG insert and the CMP insert in turning GH4169 are carried out, under the same cutting condition, compared with the CUG insert, the average tool life of the CMP insert is increased by 35.92%. This study demonstrates that the CMP technique is an effective potential method to improve the surface integrity, the cutting performance and the tool life of conventional uncoated grinding cemented carbide inserts & tools in the machining of difficult-to-cut materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Ezugwu, E. O., Wang, Z. M., & Macado, A. R. (1999). The machinability of nickel-based alloys: A review. Journal of Materials Processing Technology,86(1–3), 1–16. https://doi.org/10.1016/S0924-0136(98)00314-8.

    Article  Google Scholar 

  2. Choudhury, I. A., & El-Baraide, M. A. (1998). Machinability of nickel-base super alloys: A general review. Journal of Materials Processing Technology,77, 278–284. https://doi.org/10.1016/S0924-0136(97)00429-9.

    Article  Google Scholar 

  3. Arunachalam, R. M., & Mannan, M. A. (2000). Machinability of nickel-based high temperature alloys. Machining Science and Technology,4(1), 127–168. https://doi.org/10.1080/10940340008945703.

    Article  Google Scholar 

  4. Ezugwu, E. O., Bonney, J., & Yamane, Y. (2003). An overview of the machinability of aeroengine alloys. Journal of Materials Processing Technology,134(2), 233–253. https://doi.org/10.1016/S0924-0136(02)01042-7.

    Article  Google Scholar 

  5. Ulutan, D., & Ozel, T. (2011). Machining induced surface integrity in titanium and nickel alloys: A review. International Journal of Machine Tools & Manufacture,51, 250–280. https://doi.org/10.1016/j.ijmachtools.2010.11.003.

    Article  Google Scholar 

  6. Luo, S. Y., Liu, Y. C., Chou, C. C., & Chen, J. P. (2001). Performance of power filled resin-bonded diamond wheels in the vertical dry grinding of tungsten carbide. Journal of Materials Processing Technology,118(1–3), 329–336. https://doi.org/10.1016/S0924-0136(01)00861-5.

    Article  Google Scholar 

  7. Hegeman, J. B. J. W., Hosson, J. T. M. D., & With, G. (2001). Grinding of WC–Co hard-metals. Wear,248(1–2), 187–196. https://doi.org/10.1016/S0043-1648(00)00561-5.

    Article  Google Scholar 

  8. Kim, J. D., & Lee, E. S. (1999). A study of the mirror-like grinding of sintered carbide with optimum in-process electrolytic dressing. The International Journal of Advanced Manufacturing Technology,15(9), 615–623. https://doi.org/10.1007/s001700050110.

    Article  Google Scholar 

  9. Yin, L., Spowage, A. C., Ramesh, K., Huang, H., Pickering, J. P., & Vancoille, E. Y. J. (2004). Influence of microstructure on ultraprecision grinding of cemented carbides. International Journal of Machine Tools and Manufacture,44(5), 533–543. https://doi.org/10.1016/j.ijmachtools.2003.10.022.

    Article  Google Scholar 

  10. Sharman, A. R. C., Hughes, J. I., & Ridgway, K. (2004). Workpiece surface integrity and tool life issues when turning Inconel 718TM nickel based superalloy. Machining Science and Technology,8(3), 399–414. https://doi.org/10.1081/MST-200039865.

    Article  Google Scholar 

  11. Yang, Q., Yang, J., Wen, Y., Zhang, Q., Chen, L., & Chen, H. (2018). A novel route for the synthesis of ultrafine WC-15 wt %Co cemented carbides. Journal of Alloys and Compounds,748, 577–582. https://doi.org/10.1016/j.jallcom.2018.03.197.

    Article  Google Scholar 

  12. Li, J., Cheng, J., Wei, B., & Chen, P. (2019). Preparation and performance of ultrafine grained WC-10Co alloys with added La2O3. Ceramics International,45(3), 3969–3976. https://doi.org/10.1016/j.ceramint.2018.11.071.

    Article  Google Scholar 

  13. Fabijanić, T. A., Alar, Ž., & Ćorić, D. (2016). Influence of consolidation process and sintering temperature on microstructure and mechanical properties of near nano- and nano-structured WC-Co cemented carbides. International Journal of Refractory Metals and Hard Materials,54, 82–89. https://doi.org/10.1016/j.ijrmhm.2015.07.017.

    Article  Google Scholar 

  14. Arunachalam, R. M., Mannan, M. A., & Spowage, A. C. (2004). Surface integrity when machining age hardened Inconel 718 with coated carbide cutting tools. International Journal of Machine Tools & Manufacture,44, 1481–1491. https://doi.org/10.1016/j.ijmachtools.2004.05.005.

    Article  Google Scholar 

  15. Sharman, A. R. C., Hughes, J. I., & Ridgway, K. (2006). An analysis of the residual stresses generated in Inconel 718TM when turning. Journal of Materials Processing Technology,173(3), 359–367. https://doi.org/10.1016/j.jmatprotec.2005.12.007.

    Article  Google Scholar 

  16. Yamaguchi, H., Srivastava, A. K., Tan, M. A., Riveros, R. E., & Hashimoto, F. (2012). Magnetic abrasive finishing of cutting tools for machining of titanium alloys. CIRP Annals- Manufacturing Technology,61, 311–314. https://doi.org/10.1016/j.cirp.2012.03.066.

    Article  Google Scholar 

  17. Yamaguchi, H., Hendershot, P., Pavel, R., & Jonathan, C. I. (2016). Polishing of uncoated cutting tool surfaces for extended tool life in turning of Ti–6Al–4V. Journal of Manufacturing Processes,24(2), 355–360. https://doi.org/10.1016/j.jmapro.2016.06.014.

    Article  Google Scholar 

  18. Malik, F., & Hasan, M. (1995). Manufacturability of the CMP process. Thin Solid Films,270(1–2), 612–615. https://doi.org/10.1016/0040-6090(96)80083-6.

    Article  Google Scholar 

  19. Jang, S., Jeong, H., Yuh, M., Park, I., & Park, J. (2016). Effect of glycine on copper CMP. International Journal of Precision Engineering and Manufacturing-Green Technology,3(2), 155–159. https://doi.org/10.1007/s40684-016-0019-1.

    Article  Google Scholar 

  20. Xu, Q., Chen, L., Fang, J., & Yang, F. (2015). A chemical mechanical planarization model for aluminum gate structures. Microelectronic Engineering,131, 58–67. https://doi.org/10.1016/j.mee.2014.09.023.

    Article  Google Scholar 

  21. Seo, J., Kim, J. H., Lee, M., You, K., Moon, J., Lee, D. H., et al. (2017). Multi-objective optimization of tungsten CMP slurry for advanced semiconductor manufacturing using a response surface methodology. Materials and Design,117(5), 131–138. https://doi.org/10.1016/j.matdes.2016.12.066.

    Article  Google Scholar 

  22. Lee, D., Lee, H., & Jeong, H. (2016). Slurry components in metal chemical mechanical planarization (CMP) process: A review. International Journal of Precision Engineering,17(12), 1751–1762. https://doi.org/10.1007/s12541-016-0201-y.

    Article  Google Scholar 

  23. Ji, J., Pan, G., Zhang, W., Du, Y., He, P., Tian, Y., et al. (2017). Role of additive in alkaline slurries for Co CMP. ECS Journal of Solid State Science and Technology,6(12), 813–818. https://doi.org/10.1149/2.0111712jss.

    Article  Google Scholar 

  24. Wang, Y., Chen, Y., Zhao, Y., & Min, P. (2017). Chemical mechanical planarization of Al alloy in alkaline slurry at low down pressure. Journal of Materials Science: Materials in Electronics,28(4), 3364–3372. https://doi.org/10.1007/s10854-016-5930-2.

    Article  Google Scholar 

  25. Hu, Z., Qin, C., Chen, Z. C., Yang, Z., Fang, T., & Mao, M. (2018). Experimental study of chemical mechanical polishing of the final surfaces of cemented carbide inserts for effective cutting austenitic stainless steel. The International Journal of Advanced Manufacturing Technology,95, 4129–4140. https://doi.org/10.1007/s00170-017-1493-5.

    Article  Google Scholar 

  26. Santos, A. L. B. D., Duarte, M. A. V., Abrao, A. M., & Machado, A. R. (1999). An optimisation procedure to determine the coefficients of the extended Taylor’s equation in machining. International Journal of Machine Tools and Manufacture,39(1), 17–31. https://doi.org/10.1016/S0890-6955(98)00025-X.

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the programs of Hunan Provincial Department of Science and Technology of China (No. 2016GK2014), Hunan Provincial Department of Education of China (No. 19K094), Xiangtan Science and Technology Bureau, Hunan, China (No. CG-YB20191010), and Hunan Provincial Natural Science Foundation (2019JJ50591). which the authors greatly appreciate.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zihua Hu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, Z., Qin, C., Chen, X. et al. Chemical–Mechanical Polishing of Cemented Carbide Insert Surface for Extended Tool Life in Turning of GH4169 Nickel-Based Superalloy. Int. J. Precis. Eng. Manuf. 21, 1421–1435 (2020). https://doi.org/10.1007/s12541-020-00347-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12541-020-00347-3

Keywords

Navigation