Model Predictive Control of Autonomous Delivery Robot with Non-minimum Phase Characteristic


This paper introduces the concept of motion planning of delivery robot in an autonomous driving mode using an inverted pendulum model that can effectively control disturbance. The inverted pendulum model exhibits the non-minimum phase characteristic caused by the right half-plane zero. An effective method of reducing this characteristic is examined. A motion platform with 3-degree-of-freedom motion and a touch sensor are installed on a wheeled omnidirectional mobile platform. A steel ball is placed on the touch sensor and controlled to be located at the center. As the autonomous delivery robot moves, the steel ball is subjected to various disturbances and goes off the center. The influence of disturbance can be predicted by measuring the distance the steel ball moves away from the center. In this paper, linear quadratic regulator, preview control, and model predictive control are applied to the inverted pendulum model for motion planning, and thus the reduction of the non-minimum phase characteristic can be comparatively analyzed via simulation. The decrease in the disturbance is experimentally compared according to motion planning. Consequently, this paper proposes an effective motion planning method for an autonomous delivery robot with non-minimum phase characteristic.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15


  1. 1.

    Choi, D., & Oh, J. (2012). ZMP stabilization of rapid mobile manipulator. In Proceedings of the IEEE international conference on robotics and automation (ICRA) (pp. 883–888). IEEE.

  2. 2.

    García, P., Albertos, P., & Hägglund, T. (2016). Control of unstable non-minimum-phase delayed systems. Journal of Process Control, 16(10), 1099–1111.

    Article  Google Scholar 

  3. 3.

    Nakamura, R., & Amino, A. (2017). Perfect tracking control using a phase plane for a wheeled inverted pendulum under hardware constraints. In Proceedings of the IEEE international conference on robotics and automation (ICRA) (pp. 4377–4382). IEEE.

  4. 4.

    Dallali, H., Brown, M., & Vanderborght, B. (2009). Using the torso to compensate for non-minimum phase behaviour in ZMP bipedal walking. In T. Kröger & F. M. Wahl (Eds.), Advances in robotics research (pp. 191–202). Berlin: Springer.

    Google Scholar 

  5. 5.

    Katayama, T., Ohki, T., Inoue, T., & Kato, T. (1985). Design of an optimal controller for a discrete-time system subject to previewable demand. International Journal of Control, 41(3), 677–699.

    MathSciNet  Article  Google Scholar 

  6. 6.

    Akachi, K., Kaneko, K., Kanehira, N., Ota, S., Miyamori, G., Hirata, M., et al. (2005). Development of humanoid robot HRP-3P. In 5th IEEE-RAS international conference on humanoid robots (pp. 50–55). IEEE.

  7. 7.

    Kajita, S., Kanehiro, F., Kaneko, K., Fujiwara, K., Harada, K., Yokoi, K., et al. (2003). Biped walking pattern generation by using preview control of zero-moment point. In 2003 IEEE international conference on robotics and automation (ICRA) (pp. 1620–1626). IEEE.

  8. 8.

    Cho, B.-K., & Kim, J.-Y. (2018). Dynamic posture stabilization of a biped robot SUBO-1 on slope-changing grounds. International Journal of Precision Engineering and Manufacturing, 19(7), 1003–1009.

    Article  Google Scholar 

  9. 9.

    Holkar, K. S., & Waghmare, L. M. (2010). An overview of model predictive control. International Journal of Control and Automation, 3(4), 47–63.

    Google Scholar 

  10. 10.

    Pannocchia, G., & Rawlings, J. B. (2003). Disturbance models for offset-free model-predictive control. AIChE Journal, 49(2), 426–437.

    Article  Google Scholar 

  11. 11.

    Wieber, P.-B. B. (2006). Trajectory free linear model predictive control for stable walking in the presence of strong perturbations. In 2006 6th IEEE-RAS international conference on humanoid robots (pp. 137–142). IEEE.

  12. 12.

    Giselsson, P. (2009). Model predictive control in a pendulum system. In 2009 American control conference (pp. 2335–2340).

  13. 13.

    Lafaye, J., Collette, C., & Wieber, P. B. (2015). Model predictive control for tilt recovery of an omnidirectional wheeled humanoid robot. In 2015 IEEE international conference on robotics and automation (ICRA) (pp. 5134–5139). IEEE.

  14. 14.

    Lim, H., et al. (2014). Experimental verification of nonlinear model predictive tracking control for six-wheeled unmanned ground vehicles. International Journal of Precision Engineering and Manufacturing, 15(5), 831–840.

    Article  Google Scholar 

  15. 15.

    Choi, D., Kim, M., Kim, H., Choe, J., & Nah, M. C. (2018). Real-time motion planning of autonomous personal transporter using model predictive control for minimizing non-minimum phase motion. In 2018 15th international conference on ubiquitous robots (UR) (pp. 362–368). IEEE.

  16. 16.

    Zeeshan, A., Nauman, N., & Jawad Khan, M. (2012). Design, control and implementation of a ball on plate balancing system. In Proceedings of 2012 9th international Bhurban conference on applied sciences and technology (IBCAST) (pp. 22–26). IEEE.

  17. 17.

    Awtar, S., Bernard, C., Boklund, N., Master, A., Ueda, D., & Craig, K. (2002). Mechatronic design of a ball-on-plate balancing system. Mechatronics, 12(2), 217–228.

    Article  Google Scholar 

  18. 18.

    Fan, X., Zhang, N., & Teng, S. (2004). Trajectory planning and tracking of ball and plate system using hierarchical fuzzy control scheme. Fuzzy Sets and Systems, 144(2), 297–312.

    MathSciNet  Article  Google Scholar 

  19. 19.

    Fabregas, E., Chacón, J., Dormido-Canto, S., Farias, G., & Dormido, S. (2015). Virtual laboratory of the ball and plate system. IFAC-PapersOnLine, 48(29), 152–157.

    Article  Google Scholar 

  20. 20.

    Jørgensen, V. (1974). A ball-balancing system for demonstration of basic concepts in the state-space control theory. International Journal of Electrical Engineering Education, 11(4), 367–376.

    Article  Google Scholar 

  21. 21.

    Choi, D., & Oh, J. (2008). Human-friendly motion control of a wheeled inverted pendulum by reduced-order disturbance observer. In 2008 IEEE international conference on robotics and automation (ICRA) (pp. 2521–2526). IEEE.

  22. 22.

    Choi, D., Oh, J. H. (2011). Four and two wheel transformable dynamic mobile platform. In 2011 IEEE international conference on robotics and automation (ICRA) (pp. 1–4). IEEE.

  23. 23.

    Kim, M., & Choi, D. (2019). Design and development of a variable configuration delivery robot platform. International Journal of Precision Engineering and Manufacturing, 20(10), 1757–1765.

    Article  Google Scholar 

  24. 24.

    Choi, D., & Oh, J. (2014). Motion planning for a rapid mobile manipulator using model-based ZMP stabilization. Robotica.

    Article  Google Scholar 

  25. 25.

    Choi, D., Kim, M., & Oh, J. H. (2012). Development of a rapid mobile robot with a multi-degree-of-freedom inverted pendulum using the model-based zero-moment point stabilization method. Advanced Robotics, 26(5–6), 515–535.

    Article  Google Scholar 

  26. 26.

    Kim, M., Choi, D., & Oh, J. H. J. (2010). Stabilization of a rapid four-wheeled mobile platform using the ZMP stabilization method. In 2010 IEEE/ASME international conference on advanced intelligent mechatronics (AIM) (pp. 317–322). IEEE.

  27. 27.

    Canete, L., & Takahashi, T. (2014). Development of a single controller for the compensation of several types of disturbances during task execution of a wheeled inverted pendulum assistant robot. In 2014 IEEE/RSJ international conference on intelligent robots and systems (IROS) (pp. 2414–2420). IEEE.

  28. 28.

    Kajita, S., Morisawa, M., Harada, K., Kaneko, K., Kanehiro, F., Fujiwara, K., et al. (2006). Biped walking pattern generator allowing auxiliary ZMP control. In 2006 IEEE/RSJ international conference on intelligent robots and systems (IROS) (pp. 2993–2999). IEEE.

  29. 29.

    [Experiment] Ball Plate Omni Robot. (2019). Retrieved December 5, 2019, from

Download references


This work was supported by 2018 Research Fund of Myongji University.

Author information



Corresponding author

Correspondence to Dongil Choi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Choi, D. Model Predictive Control of Autonomous Delivery Robot with Non-minimum Phase Characteristic. Int. J. Precis. Eng. Manuf. 21, 883–894 (2020).

Download citation


  • Model predictive control
  • Motion planning
  • Autonomous robot