Skip to main content
Log in

Investigation on MRR and Machining Gap of Micro Reciprocated Wire-EDM for SKD11

  • Regular Paper
  • Published:
International Journal of Precision Engineering and Manufacturing Aims and scope Submit manuscript

Abstract

In this paper, the investigational work is carried out on the micro reciprocated wire electrical discharge machining (wire-EDM) of SKD11 using circularly travelled wire with Φ30 μm as tool electrode, aiming to achieve the fabrication of micro parts with high cost-effect, efficiency and precision. The experiments are systematically performed using central composite design approach of response surface methodology to study the effect of open voltage, discharge capacitance, pulse duration and feed rate on material removal rate (MRR) and machining gap. The mathematical models of MRR and machining gap are developed by analysis of variance, and whilst verified by confirmation experiments with ≤ 8.38% and 6.70% prediction errors for MRR and machining gap, respectively. Besides, multi-objective optimization of parameter combinations is attempted by non-dominated sorting genetic algorithm-II. Finally, a typical experimental sample, micro gear is successfully machined with 1194.38 μm tip diameter under the condition of No. 14 optimal solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

U :

Open voltage

C :

Discharge capacitance

T on :

Pulse duration

F :

Feed rate

T off :

Pulse interval

R :

Discharge resistance

References

  1. Ghayesh, M., Farokhi, H., & Amabili, M. (2013). Nonlinear behaviour of electrically actuated MEMS resonators. International Journal of Engineering Science,71, 137–155.

    Article  Google Scholar 

  2. Zhong, J. M., Wu, X. Y., Xu, B., Li, J. B., Luo, F., Cheng, R., et al. (2015). Laminated fabrication of micro-stepped gear mold based on WEDM and thermal diffusion welding. The International Journal of Advanced Manufacturing Technology,78(5–8), 1233–1240.

    Article  Google Scholar 

  3. Li, J. W., Liu, H. X., Shen, Z. B., Qian, Q., Zhang, H. F., & Wang, X. (2016). Formability of micro-gears fabrication in laser dynamic flexible punching. Journal of Materials Processing Technology,234, 131–142.

    Article  Google Scholar 

  4. Zhang, Q., Felder, E., & Bruschi, S. (2009). Evaluation of friction condition in cold forging by using T-shape compression test. Journal of Materials Processing Technology,209(17), 5720–5729.

    Article  Google Scholar 

  5. Pandey, A., & Singh, S. (2010). Current research trends in variants of electrical discharge machining: A review. International Journal of Engineering Science and Technology,2(6), 2172–2191.

    Google Scholar 

  6. Ho, K. H., Newman, S. T., Rahimifard, S., & Allen, R. D. (2004). State of the art in wire electrical discharge machining (WEDM). International Journal of Machine Tools and Manufacture,44(12–13), 1247–1259.

    Article  Google Scholar 

  7. Muthuramalingam, T., & Mohan, B. (2015). A review on influence of electrical process parameters in EDM process. Archives of Civil and Mechanical Engineering,15(1), 87–94.

    Article  Google Scholar 

  8. Park, J. W., Kim, B. H., Ok, J. G., Kim, W. J., Kim, Y. H., & Chu, C. N. (2012). Wire electrical discharge machining of carbon nanofiber mats for field emission. International Journal of Precision Engineering and Manufacturing,13(4), 593–599.

    Article  Google Scholar 

  9. Yilmaz, N. F., & Eyercioglu, O. (2008). An integrated computer-aided decision support system for die stresses and dimensional accuracy of precision forging dies. The International Journal of Advanced Manufacturing Technology,40(9–10), 875–886.

    Google Scholar 

  10. Ming, W., Zhang, Z., Zhang, G., Huang, Y., Guo, J. W., & Chen, Y. (2014). Multi-objective optimization of 3D-surface topography of machining YG15 in WEDM. Materials and Manufacturing Processes,29(5), 514–525.

    Article  Google Scholar 

  11. Zhao, Y., Kunieda, M., & Abe, K. (2014). Study of EDM cutting of single crystal silicon carbide. Precision Engineering,38(1), 92–99.

    Article  Google Scholar 

  12. Ming, W., Zhang, Z., Wang, S. Y., Huang, H., Zhang, Y., & Shen, D. L. (2017). Investigating the energy distribution of workpiece and optimizing process parameters during the EDM of Al6061, Inconel718, and SKD11. The International Journal of Advanced Manufacturing Technology,92(9–12), 4039–4056.

    Article  Google Scholar 

  13. Zheng, J., Lai, X., Zhou, X., Chen, A., & Zheng, W. (2019). Non-pulsed energy modeling based on energy consumption subunits in wire electrical discharge machining (WEDM) process. International Journal of Precision Engineering and Manufacturing,20(5), 853–862.

    Article  Google Scholar 

  14. Sun, Y., Gong, Y., Liu, Y., Cai, M., Ma, X. T., & Li, P. F. (2018). Experimental investigation on effects of machining parameters on the performance of Ti–6Al–4 V micro rotary parts fabricated by LS-WEDT. Archives of Civil and Mechanical Engineering,18(2), 385–400.

    Article  Google Scholar 

  15. Di, S. C., Chu, X. Y., Wei, D. B., Wang, Z. L., Chi, G. X., & Liu, Y. (2009). Analysis of kerf width in micro-WEDM. International Journal of Machine Tools and Manufacture,49(10), 788–792.

    Article  Google Scholar 

  16. Habib, S., & Okada, A. (2015). Experimental investigation on wire vibration during fine wire electrical discharge machining process. The International Journal of Advanced Manufacturing Technology,4(9–12), 2265–2276.

    Google Scholar 

  17. Habib, S., & Okada, A. (2016). Study on the movement of wire electrode during fine wire electrical discharge machining process. Journal of Materials Processing Technology,227, 147–152.

    Article  Google Scholar 

  18. Saha, A., & Mondal, S. C. (2016). Multi-objective optimization in WEDM process of nanostructured hardfacing materials through hybrid techniques. Measurement,94, 46–59.

    Article  Google Scholar 

  19. Khan, I. A., & Tikam, S. R. (2012). Modeling of wire electrical discharge machining of alloy steel (HCHCr). International Journal of Precision Engineering and Manufacturing,13(11), 1989–1995.

    Article  Google Scholar 

  20. Abidi, M. H., Al-Ahmari, A. M., Umer, U., & Rasheed, M. S. (2018). Multi-objective optimization of micro-electrical discharge machining of nickel-titanium-based shape memory alloy using MOGA-II. Measurement,125, 336–349.

    Article  Google Scholar 

  21. Zhenlong, W., Xuesong, G., Guanxin, C., & Yukui, W. (2014). Surface integrity associated with SiC/Al particulate composite by micro-wire electrical discharge machining. Materials and Manufacturing Processes,29(5), 532–539.

    Article  Google Scholar 

  22. Box, G. E. P., & Wilson, K. B. (1992). On the experimental attainment of optimum conditions. Breakthroughs in statistics (pp. 270–310). New York: Springer.

    Book  Google Scholar 

  23. Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. (2002). A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation,6(2), 182–197.

    Article  Google Scholar 

  24. Guitrau, E. B. (1997). The EDM handbook (pp. 102–105). Cincinnati: Hanser Gardner.

    Google Scholar 

  25. Heo, S., Jeong, Y. H., Min, B. K., & Lee, S. J. (2009). Virtual EDM simulator: Three-dimensional geometric simulation of micro-EDM milling processes. International Journal of Machine Tools and Manufacture,49(12–13), 1029–1034.

    Article  Google Scholar 

  26. Jameson, E. C. (2001). Electrical discharge machining (pp. 82–85). Dearborn: Society of Manufacturing Engineers.

    Google Scholar 

Download references

Acknowledgements

This research work is funded by National Natural Science Foundation of China (Grant No. 51675132); Major Project of Applied Technology Research and Development Plan of Heilongjiang Province (Grant No. GA16A404); and National Natural Science Foundation of China (Grant No. 51521003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yukui Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Wang, Z., Wang, Y. et al. Investigation on MRR and Machining Gap of Micro Reciprocated Wire-EDM for SKD11. Int. J. Precis. Eng. Manuf. 21, 11–22 (2020). https://doi.org/10.1007/s12541-019-00233-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12541-019-00233-7

Keywords

Navigation