Skip to main content
Log in

Single-Point Grinding of Alumina and Zirconia Ceramics Under Two-Dimensional Compressive Prestress

  • Regular Paper
  • Published:
International Journal of Precision Engineering and Manufacturing Aims and scope Submit manuscript

Abstract

In this study, single-point grinding experiments were performed on alumina and zirconia ceramics to investigate the grinding processes under two-dimensional compressive prestress (TCP). Grinding forces and grooves were measured under different values of TCP to evaluate the grinding defects. The material removal rate and actual grinding depth were exploited to investigate the grinding-induced damage and material removal mechanisms. The results demonstrate that the grinding forces show an increasing tendency with the increasing values of TCP, while the cracks and chipping along the grinding groove edges of both alumina and zirconia ceramics can be reduced. In addition, the material removal rates of both alumina and zirconia ceramics show the same change tendency with the grinding-induced damage for decreasing the actual grinding depth under different values of TCP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

TCP:

two-dimensional compressive prestress

References

  1. Agarwal, S., & Rao, P. V. (2008). Experimental investigation of surface/subsurface damage formation and material removal mechanisms in SiC grinding. International Journal of Machine Tools and Manufacture,48, 698–710. https://doi.org/10.1016/j.ijmachtools.2007.10.013.

    Article  Google Scholar 

  2. Xie, J., Li, Q., Sun, J. X., & Li, Y. H. (2015). Study on ductile-mode mirror grinding of SiC ceramic freeform surface using an elliptical torus-shaped diamond wheel. Journal of Materials Processing Technology,222, 422–433. https://doi.org/10.1016/j.jmatprotec.2015.03.027.

    Article  Google Scholar 

  3. Malkin, S., & Ritter, J. E. (1989). Grinding mechanisms and strength degradation for ceramics. Journal of Engineering for Industry,111, 167–174.

    Article  Google Scholar 

  4. Zhang, B., Zheng, X. L., Tokura, H., & Yoshikawa, M. (2003). Grinding induced damage in ceramics. Journal of Materials Processing Technology,132, 353–364. https://doi.org/10.1016/S0924-0136(02)00952-4.

    Article  Google Scholar 

  5. Lee, S. J., Do, Kim J., & Suh, J. (2014). Microstructural variations and machining characteristics of silicon nitride ceramics from increasing the temperature in laser assisted machining. International Journal of Precision Engineering and Manufacturing,15, 1269–1274. https://doi.org/10.1007/s12541-014-0466-y.

    Article  Google Scholar 

  6. Zhang, Q., Fu, Y., Su, H., et al. (2018). Surface damage mechanism of monocrystalline silicon during single point diamond grinding. Wear,396–397, 48–55. https://doi.org/10.1016/j.wear.2017.11.008.

    Article  Google Scholar 

  7. Bifano, G. T. (1991). Ductile-regime grinding: A new technology for machining brittle materials. Journal of Engineering for Industry,113, 184.

    Article  Google Scholar 

  8. Dai, J., Su, H., Yu, T., et al. (2018). Experimental investigation on materials removal mechanism during grinding silicon carbide ceramics with single diamond grain. Precision Engineering,51, 271–279. https://doi.org/10.1016/j.precisioneng.2017.08.019.

    Article  Google Scholar 

  9. Kttagawa, T., & Maekawa, K. (1990). Plasma hot machining for new engineering materials. Wear,139, 251–267. https://doi.org/10.1016/0043-1648(90)90049-G.

    Article  Google Scholar 

  10. Huang, H., & Liu, Y. C. (2003). Experimental investigations of machining characteristics and removal mechanisms of advanced ceramics in high speed deep grinding. International Journal of Machine Tools and Manufacture,43, 811–823. https://doi.org/10.1016/S0890-6955(03)00050-6.

    Article  Google Scholar 

  11. Ramesh, K., Yeo, S. H., Gowri, S., & Zhou, L. (2001). Experimental evaluation of super high-speed grinding of advanced ceramics. The International Journal of Advanced Manufacturing Technology,17, 87–92. https://doi.org/10.1007/s001700170196.

    Article  Google Scholar 

  12. Heard, H. C., & Cline, C. F. (1980). Mechanical behaviour of polycrystalline BeO, Al2O3 and AlN at high pressure. Journal of Materials Science,15, 1889–1897. https://doi.org/10.1007/BF00550614.

    Article  Google Scholar 

  13. Huang, H., Damjanac, B., & Detournay, E. (1997). Numerical modeling of normal wedge indentation in rocks with lateral confinement. International Journal of Rock Mechanics and Mining Sciences,34, 613. https://doi.org/10.1016/S1365-1609(97)00169-X.

    Article  Google Scholar 

  14. Crossland, B. (1958). The plastic flow and fracture of a 《Brittle》 material (gley cast iron) with particular reference to the effect of fluid pressure. Proceedings of the Institution of Mechanical Engineers,172, 805–820.

    Article  Google Scholar 

  15. Yoshino, M., Aoki, T., Sugishima, T., & Shirakashi, T. (1999). Scratching test on hard-brittle materials under high hydrostatic pressure. Seimitsu Kogaku Kaishi/Japan Society of Precision Engineering,65, 1481–1485. https://doi.org/10.1115/1.1347035.

    Article  Google Scholar 

  16. Yoshino, M., Aoki, T., Shirakashi, T., & Komanduri, R. (2001). Some experiments on the scratching of silicon: In situ scratching inside an SEM and scratching under high external hydrostatic pressures. International Journal of Mechanical Sciences,43, 335–347. https://doi.org/10.1016/S0020-7403(00)00019-9.

    Article  Google Scholar 

  17. Tan, Y., Jiang, S., Yang, D., & Sheng, Y. (2011). Scratching of Al2O3under pre-stressing. Journal of Materials Processing Technology,211, 1217–1223. https://doi.org/10.1016/j.jmatprotec.2011.02.005.

    Article  Google Scholar 

  18. Zhang, G., Zeng, Y., Zhang, W., et al. (2016). Monitoring for damage in two-dimensional pre-stress scratching of SiC ceramics. International Journal of Precision Engineering and Manufacturing,17, 1425–1432. https://doi.org/10.1007/s12541-016-0168-8.

    Article  Google Scholar 

  19. Zhang, B., Wang, J., Yang, F., & Zhu, Z. (1999). The effect of machine stiffness on grinding of silicon nitride. International Journal of Machine Tools and Manufacture,39, 1263–1283.

    Article  Google Scholar 

  20. Lawn, B. R., & Swain, M. V. (1975). Microfracture beneath point indentations in brittle solids. Journal of Materials Science,10, 113–122. https://doi.org/10.1007/BF00541038.

    Article  Google Scholar 

  21. Jiang, S., Tan, Y., Zhang, G., et al. (2013). Mechanics model for ceramic materials machining under compressive pre-stress. Journal of the Chinese Ceramic Society,6, 738–744.

    Google Scholar 

  22. Conway, J. C., & Kirchner, H. P. (1980). The mechanics of crack initiation and propagation beneath a moving sharp indentor. Journal of Materials Science,15, 2879–2883. https://doi.org/10.1007/BF00550558.

    Article  Google Scholar 

  23. Zhou, Yichun. (2008). Solid mechanics in materials. China: Beijing.

    Google Scholar 

Download references

Acknowledgements

The work was supported by the National Natural Science Foundation of China (NSFC) (Project Nos. 51775469, 51704256, 91860133) and Hunan Province Natural Science Foundation (Project No. 2017JJ4051).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gaofeng Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, G., Wang, Z., Chen, W. et al. Single-Point Grinding of Alumina and Zirconia Ceramics Under Two-Dimensional Compressive Prestress. Int. J. Precis. Eng. Manuf. 21, 1–9 (2020). https://doi.org/10.1007/s12541-019-00232-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12541-019-00232-8

Keywords

Navigation