Skip to main content
Log in

Application of Fuzzy Logic in the Analysis of Surface Roughness of Thin-Walled Aluminum Parts

  • Regular Paper
  • Published:
International Journal of Precision Engineering and Manufacturing Aims and scope Submit manuscript

Abstract

This paper presents the development and application of fuzzy logic in the milling of thin-walled parts for the purpose of analyzing surface roughness. Surface roughness is an important performance indicator of finished components. Depending on conditions such as feed ratio and wall thickness, different machining strategies can be applied. The objective was to analyze and determine the influence of the machining conditions on surface roughness. The model for analyzing and determining surface roughness of the aluminum alloy AL 7075 was trained (design rules) and compared by using the experimental data. The average deviation of the compared data for surface roughness was 12.3%. The effect of the feed ratio, wall thickness and machining strategy as well as their interactions in machining are thoroughly analyzed and presented in this study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
€32.70 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Austria)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

MRR:

Material removal rate

Ra:

Surface roughness—arithmetic mean roughness (µm)

Rz:

Surface roughness—max. height roughness (µm)

CNC:

Computer numerical control

MISO:

Multi-input–single-output

MIMO:

Multi-input–multiple-output

Al:

Aluminum

ANN:

Artificial neural network

MMC:

Metal matrix composites

MLP:

Multi-layer perceptron

RBF:

Radial basis function

PSO:

Particle swarm optimization

ANFIS:

Adaptive network-based fuzzy interface system

FIS:

Fuzzy interface system

MF:

Membership functions

3D:

Three dimensional

References

  1. Hirsch, J. (2014). Recent development in aluminum for automotive applications. Transactions of Nonferrous Metals Society of China,24, 1995–2002.

    Article  Google Scholar 

  2. Park, S. H., Nam, E., Gang, M. G., & Min, B. K. (2019). Post-machining deformation analysis for virtual machining of thin aluminium alloy parts. International Journal of Precision Engineering and Manufacturing,20, 687–691.

    Article  Google Scholar 

  3. Das, H., Mondal, M., Hong, S. T., Chun, D. M., & Han, H. N. (2018). Joining and fabrication of metal matrix composites by friction stir welding/processing. International Journal of Precision Engineering and Manufacturing—Green Technology,5(1), 151–172.

    Article  Google Scholar 

  4. Shoulder milling of thin deflecting walls. (2017). www.sandvik.coromant.com/en-gb/knowledge/milling/application_overview/shoulder_milling/shoulder_milling_thin_walls. Accessed 21 December 2017.

  5. Isaev, A., Grechishnikov, V., Pivkin, P., Kozochkin, M., Ilyuhin, Y., & Vorotnikov, A. (2016). Machining of thin-walled parts produced by additive manufacturing technologies. In 48th CIRP conference on manufacturing systems-CIRP CMS 2015, (Vol. 41, pp. 1023–1026).

  6. Dutta, A., Das, A., & Joshi, S. N. (2017). Optimum process parameters for efficient and quality thin wall machining using firefly algorithm. International Journal of Additive and Subtractive Materials Manufacturing,1(1), 3–22.

    Article  Google Scholar 

  7. Thin Wall Machining. (2017). https://www.makino.com/about/news/thin-wall-machining/171/. Accessed 21 December 2017.

  8. Ab-Kadir, A., Osman, M., & Shamsuddin, K. (2013). A comparison of milling cutting path strategies for thin-walled aluminum alloys fabrication. The Internal Journal of Engineering and Science,2(3), 1–8.

    Google Scholar 

  9. Scippa, A., Grossi, N., & Campatelli, G. (2014). FEM based cutting velocity selection for thin walled part machining. Procedia CIRP,14, 287–292.

    Article  Google Scholar 

  10. Huang, X., Sun, J., & Li, J. (2015). Effect of initial residual stress and machining-induced residual stress on the deformation of aluminum alloy plate. Strojniski vestnik-Journal of Mechanical Engineering,61(2), 131–137.

    Article  Google Scholar 

  11. Zhou, X., Zhang, D., Luo, M., & Wu, B. (2014). Toolpath dependent chatter suppression in multi-axis milling of hollow fan blades with ball-end cutter. International Journal of Advanced Manufacturing Technology,72(5–8), 643–651.

    Article  Google Scholar 

  12. Popma, M. G. R. (2010). Computer aided process planning for high speed milling of thin-walled parts: strategy-based support. University of Twente. https://ris.utwente.nl/ws/portalfiles/portal/6081866/thesis_M_Popma.pdf. Accessed 15 August 2018.

  13. Izamshah, R., Mo, J., & Ding, S. (2012). Hybrid deflection prediction on machining thin-wall monolithic aerospace components. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture,226(4), 592–605.

    Article  Google Scholar 

  14. Quintana, G., Garcia-Romeu, M. L., & Ciurana, J. (2011). Surface roughness monitoring application based on artificial neural networks for ball-end milling operations. Journal of Intelligent Manufacturing,22(4), 607–617.

    Article  Google Scholar 

  15. Baranek, I., Buransky, I., & Peterka, J. (2013). Influence of material removal way on thin-walled part quality by milling. MM (Modern Machinery) Science Journal,2013, 414–417.

    Google Scholar 

  16. Das, A., Salunkhe, B., Bolar, G., & Joshi, S. N. (2016). A comparative study on performance of approaches for machining of thin-wall components. In 6th international & 27th all India manufacturing technology, design and research conference (AIMTDR-2016), December 16–18, 2016 at College of Engineering., Pune, Maharashtra, India.

  17. Jiao, K. R., Huang, S. T., & Xu, L. F. (2014). Experimental study on surface quality at different milling speed of high volume fraction SiCp/Al thin walled test-piece. Materials Science Forum, Trans Tech Publication,800–801, 15–19.

    Article  Google Scholar 

  18. Chandrasekaran, M., & Devarasiddappa, D. (2014). Artificial neural network modeling for surface roughness prediction in cylindrical grinding of Al–SiCp metal matrix composites and ANOVA analysis. Advances in Production Engineering and Management,9(2), 59–70.

    Article  Google Scholar 

  19. Fang, N., Pai, P. S., & Edwards, N. (2016). Neural network modeling and prediction of surface roughness in machining aluminum alloys. Journal of Computer and Communications,4(5), 1–9.

    Article  Google Scholar 

  20. Pandian, P., Prabhu, P., Raja, V., & Sakthimurugan, K. (2013). Optimization and cutting parameters of thin ribs in high speed machining. International Journal of Engineering Inventions,2(4), 62–68.

    Google Scholar 

  21. Yıldız, A. R., Kurtuluş, E., Demirci, E., Yıldız, B. S., & Karagöz, S. (2016). Optimization of thin-wall structures using hybrid gravitational search and Nelder–Mead algorithm. Materials Testing,58(1), 75–78.

    Article  Google Scholar 

  22. Kovac, P., Rodic, D., Pucovski, V., Mankova, I., Savkovic, B., & Gostimirovic, M. (2012). A review of artificial intelligence approaches applied in intelligent processes. Journal of Production Engineering,15(1), 1–4.

    Article  Google Scholar 

  23. Hossain, M. S. J., & Ahmad, N. (2012). Artificial intelligence-based surface roughness prediction modeling for three-dimensional end milling. International Journal of Advanced Science and Technology,45(8), 1–18.

    Google Scholar 

  24. Sandvik Coromant. (2017). https://www.sandvik.coromant.com/en-us/products/Pages/productdetails.aspx?c=R216.32-10025-AK32A%20H10F. Accessed 21 December 2017.

  25. Borojevic, S., Lukic, D., Milosevic, M., Vukman, J., & Kramar, D. (2018). Optimization of process parameters for machining of Al 7075 thin-walled structures. Advances in Production Engineering and Management,13(2), 125–135.

    Article  Google Scholar 

  26. Kovac, P., Rodic, D., Pucovsky, V., Savkovic, B., & Gostimirovic, M. (2013). Application of fuzzy logic and regression analysis for modeling surface roughness in face milling. Journal of Intelligent Manufacturing,24(4), 755–762.

    Article  Google Scholar 

  27. Mamdani, E. H., & Assilian, S. (1975). An experiment in linguistic synthesis with a fuzzy logic controller. International Journal of Man–Machine Studies,7(1), 1–13.

    Article  Google Scholar 

  28. Sugeno, M., & Kang, G. (1988). Structure identification of fuzzy model. Fuzzy Sets and Systems,28(1), 15–33.

    Article  MathSciNet  Google Scholar 

  29. Tsukamoto, Y. (1979). An approach to fuzzy reasoning method. In M. M. Gupta, R. K. Ragade, & R. R. Yager (Eds.), Advances in fuzzy set theory and applications (pp. 137–149). Amsterdam: Elsevier.

    Google Scholar 

  30. Nukman, Y., Hassan, M., & Harizam, M. (2013). Optimization of prediction error in CO2 laser cutting process by Taguchi artificial neural network hybrid with genetic algorithm. Applied Mathematics & Information Sciences,7(1), 363–370.

    Article  Google Scholar 

  31. Ren, Q., Balazinski, M., Jemielniak, K., Baron, L., & Achiche, S. (2013). Experimental and fuzzy modelling analysis on dynamic cutting force in micro milling. Soft Computing,17(9), 1687–1697.

    Article  Google Scholar 

Download references

Acknowledgement

This paper is part of a research on projects—TR 35025 and TR 35015 supported by the Ministry of Education, Science and Technological Development, Republic of Serbia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jovan Vukman.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vukman, J., Lukic, D., Borojevic, S. et al. Application of Fuzzy Logic in the Analysis of Surface Roughness of Thin-Walled Aluminum Parts. Int. J. Precis. Eng. Manuf. 21, 91–102 (2020). https://doi.org/10.1007/s12541-019-00229-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12541-019-00229-3

Keywords