Skip to main content
Log in

Design and Control of a Lifting Assist Device for Preventing Lower Back Injuries in Industrial Athletes

  • Regular Paper
  • Published:
International Journal of Precision Engineering and Manufacturing Aims and scope Submit manuscript

Abstract

Although many lifting assist devices (LADs) have already been launched to the commercial market, and diverse types of LADs are under development with the recent advances in robotics technology, such LADs are not yet widely used in industrial fields. One of the main reason is the lack of versatility of fully passive type LADs and relatively high power consumption of fully active type LADs. In this study, our goal was to design a LAD that is not only more versatile than fully passive type LADs but also more energetically efficient than fully active type LADs. We analyzed the biomechanics of the lifting movement and developed a bi-articular elastic tendon mechanism based on our results. This conceptual mechanism was realized via a physical LAD operated by a series elastic actuator with a Bowden cable transmission. In this paper, we introduce our LAD and control strategy for assisting with lifting movements. Our LAD is capable of adjusting the output force behavior and assisting with lifting tasks at a low mechanical power consumption. Our preliminary testing suggests that our LAD reduces the muscle activation levels of the erector spinae and rectus abdominis muscles during a lifting task.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Abdoli-E, M., Agnew, M. J., & Stevenson, J. M. (2006). An on-body personal lift augmentation device (plad) reduces emg amplitude of erector spinae during lifting tasks. Clinical Biomechanics, 21(5), 456–465. https://doi.org/10.1016/j.clinbiomech.2005.12.021.

    Article  Google Scholar 

  2. Anderson, G. F., & Hussey, P. S. (2000). Population aging: A comparison among industrialized countries. Health affairs, 19(3), 191–203. https://doi.org/10.1377/hlthaff.19.3.191.

    Article  Google Scholar 

  3. Angold, R., Zoss, A., Kazerooni, H., Burns, J., Amundson, K., & Harding, N. (2016). Exoskeleton load handling system and method of use. US Patent 9,504,623.

  4. Babcock, M. A. (2010). Personal upper body support device for lower back muscles assist. US Patent 7,744,552.

  5. Baltrusch, S., van Dieën, J., van Bennekom, C., & Houdijk, H. (2018). The effect of a passive trunk exoskeleton on functional performance in healthy individuals. Applied Ergonomics, 72, 94–106. https://doi.org/10.1016/j.apergo.2018.04.007.

    Article  Google Scholar 

  6. Bloom, D. E., Boersch-Supan, A., McGee, P., Seike, A., et al. (2011). Population aging: Facts, challenges, and responses. Benefits and Compensation International, 41(1), 22.

    Google Scholar 

  7. Bosch, T., van Eck, J., Knitel, K., & de Looze, M. (2016). The effects of a passive exoskeleton on muscle activity, discomfort and endurance time in forward bending work. Applied Ergonomics, 54, 212–217. https://doi.org/10.1016/j.apergo.2015.12.003.

    Article  Google Scholar 

  8. Collins, S. H., & Kuo, A. D. (2010). Recycling energy to restore impaired ankle function during human walking. PLoS ONE, 5(2), e9307. https://doi.org/10.1371/journal.pone.0009307.

    Article  Google Scholar 

  9. De Looze, M. P., Bosch, T., Krause, F., Stadler, K. S., & O’Sullivan, L. W. (2016). Exoskeletons for industrial application and their potential effects on physical work load. Ergonomics, 59(5), 671–681. https://doi.org/10.1080/00140139.2015.1081988.

    Article  Google Scholar 

  10. De Luca, C. J., Gilmore, L. D., Kuznetsov, M., & Roy, S. H. (2010). Filtering the surface emg signal: Movement artifact and baseline noise contamination. Journal of Biomechanics, 43(8), 1573–1579. https://doi.org/10.1016/j.jbiomech.2010.01.027.

    Article  Google Scholar 

  11. Ferris, D. P., Sawicki, G. S., & Daley, M. A. (2007). A physiologist’s perspective on robotic exoskeletons for human locomotion. International Journal of Humanoid Robotics, 4(03), 507–528. https://doi.org/10.1142/S0219843607001138.

    Article  Google Scholar 

  12. Graham, R. B., Sadler, E. M., & Stevenson, J. M. (2011). Does the personal lift-assist device affect the local dynamic stability of the spine during lifting? Journal of Biomechanics, 44(3), 461–466. https://doi.org/10.1016/j.jbiomech.2010.09.034.

    Article  Google Scholar 

  13. Grosu, S., De Rijcke, L., Grosu, V., Geeroms, J., Vanderboght, B., Lefeber, D., et al. (2018). Driving robotic exoskeletons using cable-based transmissions: A qualitative analysis and overview. Applied Mechanics Reviews. https://doi.org/10.1115/1.4042399.

    Google Scholar 

  14. Hara, H., & Sankai, Y. (2012). Hal equipped with passive mechanism. In 2012 IEEE/SICE international symposium on system integration (SII) (pp. 1–6). IEEE. https://doi.org/10.1109/SII.2012.6427323

  15. Hoogendoorn, W. E., Bongers, P. M., de Vet, H. C., Douwes, M., Koes, B. W., Miedema, M. C., et al. (2000). Flexion and rotation of the trunk and lifting at work are risk factors for low back pain: Results of a prospective cohort study. Spine, 25(23), 3087–3092. https://doi.org/10.1097/00007632-200012010-00018.

    Article  Google Scholar 

  16. Huysamen, K., de Looze, M., Bosch, T., Ortiz, J., Toxiri, S., & O’Sullivan, L. W. (2018). Assessment of an active industrial exoskeleton to aid dynamic lifting and lowering manual handling tasks. Applied Ergonomics, 68, 125–131. https://doi.org/10.1016/j.apergo.2017.11.004.

    Article  Google Scholar 

  17. Jeong, U., & Cho, K. J. (2015). Feedforward friction compensation of bowden-cable transmission via loop routing. In 2015 IEEE/RSJ international conference on intelligent robots and systems (IROS) (pp. 5948–5953). IEEE. https://doi.org/10.1109/IROS.2015.7354223

  18. Kaneko, M., Yamashita, T., & Tanie, K. (1991). Basic considerations on transmission characteristics for tendon drive robots. In 5th international conference on advanced robotics’ robots in unstructured environments (pp. 827–832). IEEE. https://doi.org/10.1109/ICAR.1991.240572

  19. Kim, H., Lee, J., Jang, J., Park, S., & Han, C. (2015). Design of an exoskeleton with minimized energy consumption based on using elastic and dissipative elements. International Journal of Control, Automation and Systems, 13(2), 463–474. https://doi.org/10.1007/s12555-013-0386-0.

    Article  Google Scholar 

  20. Kobayashi, H., Aida, T., & Hashimoto, T. (2009). Muscle suit development and factory application. International Journal of Automation Technology, 3(6), 709–715. https://doi.org/10.20965/ijat.2009.p0709.

    Article  Google Scholar 

  21. Koopman, A. S., Kingma, I., Faber, G. S., de Looze, M. P., & van Dieën, J. H. (2018). Effects of a passive exoskeleton on the mechanical loading of the low back in static holding tasks. Journal of Biomechanics,. https://doi.org/10.1016/j.jbiomech.2018.11.033.

    Google Scholar 

  22. Lamers, E. P., Yang, A. J., & Zelik, K. E. (2018). Feasibility of a biomechanically-assistive garment to reduce low back loading during leaning and lifting. IEEE Transactions on Biomedical Engineering, 65(8), 1674–1680. https://doi.org/10.1109/TBME.2017.2761455.

    Article  Google Scholar 

  23. Lindemann, U., Claus, H., Stuber, M., Augat, P., Muche, R., Nikolaus, T., et al. (2003). Measuring power during the sit-to-stand transfer. European Journal of Applied Physiology, 89(5), 466–470. https://doi.org/10.1007/s00421-003-0837-z.

    Article  Google Scholar 

  24. Lotz, C. A., Agnew, M. J., Godwin, A. A., & Stevenson, J. M. (2009). The effect of an on-body personal lift assist device (plad) on fatigue during a repetitive lifting task. Journal of Electromyography and Kinesiology, 19(2), 331–340. https://doi.org/10.1016/j.jelekin.2007.08.006.

    Article  Google Scholar 

  25. Mitchell, T. J. (2002). Upper body support. US Patent 6,436,065.

  26. Miura, K., Kadone, H., Koda, M., Abe, T., Endo, H., Murakami, H., et al. (2018). The hybrid assisted limb (hal) for care support, a motion assisting robot providing exoskeletal lumbar support, can potentially reduce lumbar load in repetitive snow-shoveling movements. Journal of Clinical Neuroscience, 49, 83–86. https://doi.org/10.1016/j.jocn.2017.11.020.

    Article  Google Scholar 

  27. Miura, K., Kadone, H., Koda, M., Abe, T., Kumagai, H., Nagashima, K., et al. (2018). The hybrid assistive limb (hal) for care support successfully reduced lumbar load in repetitive lifting movements. Journal of Clinical Neuroscience, 53, 276–279. https://doi.org/10.1016/j.jocn.2018.04.057.

    Article  Google Scholar 

  28. Näf, M. B., Koopman, A. S., Baltrusch, S., Rodriguez-Guerrero, C., Vanderborght, B., & Lefeber, D. (2018). Passive back support exoskeleton improves range of motion using flexible beams. Frontiers in Robotics and AI, 5, 72. https://doi.org/10.3389/frobt.2018.00072.

    Article  Google Scholar 

  29. Norman, R., Wells, R., Neumann, P., Frank, J., Shannon, H., Kerr, M., et al. (1998). A comparison of peak vs cumulative physical work exposure risk factors for the reporting of low back pain in the automotive industry. Clinical Biomechanics, 13(8), 561–573. https://doi.org/10.1016/S0268-0033(98)00020-5.

    Article  Google Scholar 

  30. Park, Y., & Jeon, S. (2015). A study on the population structure and aging of reunified Korea. Development and Society, 44(3), 411–433.

    Article  Google Scholar 

  31. Roberts, B. (1999) Back-mounted mobile back support device. US Patent 5,951,591.

  32. Sevier, T. L., Wilson, J. K., & Helfst, B. (2000). The industrial athlete? Work, 15(3), 203–207.

    Google Scholar 

  33. Sugar, T., Veneman, J., Hochberg, C., Shourijeh, M., Acosta, A., Vazquez-Torres, R., et al. (2018). Hip exoskeleton market—Review of lift assist wearables. Scottsdale: Wearable Robotics Association.

    Google Scholar 

  34. Toxiri, S., Calanca, A., Ortiz, J., Fiorini, P., & Caldwell, D. G. (2018). A parallel-elastic actuator for a torque-controlled back-support exoskeleton. IEEE Robotics and Automation Letters, 3(1), 492–499. https://doi.org/10.1109/LRA.2017.2768120.

    Article  Google Scholar 

  35. Toxiri, S., Koopman, A. S., Lazzaroni, M., Ortiz, J., Power, V., de Looze, M. P., et al. (2018). Rationale, implementation and evaluation of assistive strategies for an active back-support exoskeleton. Frontiers in Robotics and AI, 5, 53. https://doi.org/10.3389/frobt.2018.00053.

    Article  Google Scholar 

  36. Ulrey, B. L., & Fathallah, F. A. (2013). Effect of a personal weight transfer device on muscle activities and joint flexions in the stooped posture. Journal of Electromyography and Kinesiology, 23(1), 195–205. https://doi.org/10.1016/j.jelekin.2012.08.014.

    Article  Google Scholar 

  37. Ulrey, B. L., & Fathallah, F. A. (2013). Subject-specific, whole-body models of the stooped posture with a personal weight transfer device. Journal of Electromyography and Kinesiology, 23(1), 206–215. https://doi.org/10.1016/j.jelekin.2012.08.016.

    Article  Google Scholar 

  38. Vallery, H., Veneman, J., Van Asseldonk, E., Ekkelenkamp, R., Buss, M., & Van Der Kooij, H. (2008). Compliant actuation of rehabilitation robots. IEEE Robotics & Automation Magazine, 15(3), 60–69. https://doi.org/10.1109/MRA.2008.927689.

    Article  Google Scholar 

  39. Van Ham, R., Sugar, T. G., Vanderborght, B., Hollander, K. W., & Lefeber, D. (2009). Compliant actuator designs. IEEE Robotics & Automation Magazine, 16(3), 81–94. https://doi.org/10.1109/MRA.2009.933629.

    Article  Google Scholar 

  40. Vanderborght, B., Albu-Schäffer, A., Bicchi, A., Burdet, E., Caldwell, D. G., Carloni, R., et al. (2013). Variable impedance actuators: A review. Robotics and Autonomous Systems, 61(12), 1601–1614. https://doi.org/10.1016/j.robot.2013.06.009.

    Article  Google Scholar 

  41. Vanderborght, B., Tsagarakis, N. G., Semini, C., Van Ham, R., & Caldwell, D. G. (2009). Maccepa 2.0: Adjustable compliant actuator with stiffening characteristic for energy efficient hopping. In: IEEE international conference on robotics and automation, 2009. ICRA’09 (pp. 544–549). IEEE. https://doi.org/10.1109/ROBOT.2009.5152204.

  42. Wang, S., Van Dijk, W., & van der Kooij, H. (2011). Spring uses in exoskeleton actuation design. In 2011 IEEE international conference on rehabilitation robotics (ICORR) (pp. 1–6). IEEE. https://doi.org/10.1109/ICORR.2011.5975471

  43. Waters, T. R., Putz-Anderson, V., Garg, A., & Fine, L. J. (1993). Revised niosh equation for the design and evaluation of manual lifting tasks. Ergonomics, 36(7), 749–776. https://doi.org/10.1080/00140139308967940.

    Article  Google Scholar 

  44. Wehner, M. (2012). Man to machine, applications in electromyography. In M. Schwartz (Ed.), EMG methods for evaluating muscle and nerve function. InTech. ISBN: 978-953-307-793-2. http://www.intechopen.com/books/emg-methods-for-evaluating-muscle-and-nerve-function/man-to-machineapplications-in-electromyography.

Download references

Acknowledgements

The authors gratefully acknowlegde Chilyong Kwon for his contributions to early-stage device design, and Dr. Yoonhee Chang, Jungsun Kang, and Bora Jeong for their help on the experiments. This work was supported by Institute for Information & Communications Technology Promotion (IITP) Grant funded by the Korea government (MSIP) (No. 2016-0-00452, Development of creative technology based on complex 3D printing technology for labor, the elderly and the disabled).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jong-won Lee.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, Jw., Kim, G. Design and Control of a Lifting Assist Device for Preventing Lower Back Injuries in Industrial Athletes. Int. J. Precis. Eng. Manuf. 20, 1825–1838 (2019). https://doi.org/10.1007/s12541-019-00183-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12541-019-00183-0

Keywords

Navigation