Skip to main content
Log in

Improved Machinability of High Hardened Die Steel by Using Pulsed Laser Surface Treatment

  • Regular Paper
  • Published:
International Journal of Precision Engineering and Manufacturing Aims and scope Submit manuscript

Abstract

In this study, pulsed laser surface treatment was carried out in order to improve machinability in the shape correction process by ball end milling for forging dies. The die steel with high hardened layer by ion nitrided process was used as a workpiece that was irradiated by pulsed laser, and then milling experiments were performed with inclined workpieces in order to simulate machining for walls of the dies with a draft. The machinability was evaluated from specific cutting force of the material, which was obtained from the cutting force components and the actual depth of cut calculated by tool deflection measured in the machining test. The results of improved machinability were shown as the hardness reduction of surface layer induced by the laser irradiation. Therefore, the laser irradiated surface responded to increase the actual depth of cut and uncut chip thickness, while the tool deflection and specific cutting force were small compared with those for non-irradiated surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Abbreviations

δ c :

Tool deflection (µm)

ξ :

Inclined angle of workpiece (deg.)

Ø :

Tool diameter (mm)

e :

Pulse energy (mJ/pulse)

f p :

Laser pulse frequency (kHz)

f z :

Feed per tooth (µm/tooth)

h max :

Maximum uncut chip thickness (µm)

A :

Cutting area (µm2)

A d :

Axial depth of cut (mm)

D a :

Actual depth of cut (µm)

D c :

Theoretical depth of cut (µm)

F x :

Feed force (N)

F y :

Tangential force (N)

F xy :

Resultant cutting force (N)

I :

Geometrical moment of inertia (mm4)

K s :

Specific cutting force (N/µm2)

L :

Tool length contact (mm)

Q :

Average laser power (W)

Q S :

Energy density (J/mm2)

S L :

Scan line spacing (µm)

S P :

Pulse spacing (µm)

References

  1. Hawryluk, M. (2016). Review of selected methods of increasing the life of forging tools in hot die forging processes. Archives of Civil and mechanical Engineering., 16(4), 845–866.

    Article  Google Scholar 

  2. Lee, I., & Park, I. (2007). Microstructures and mechanical properties of surface-hardened layer produced on SKD 61 steel by plasma radical nitriding. Materials Science and Engineering A, 449, 890–893.

    Article  Google Scholar 

  3. Ebara, R., & Kubota, K. (2008). Failure analysis of hot forging dies for automotive components. Engineering Failure Analysis, 15(7), 881–893.

    Article  Google Scholar 

  4. Gronostajski, Z., Kaszuba, M., Polak, S., Zwierzchowski, M., Niechajowice, A., & Hawryluk, M. (2016). The failure mechanisms of hot forging dies. Materials Science and Engineering A, 657, 147–160.

    Article  Google Scholar 

  5. Ahn, D.-G. (2013). Hardfacing technologies for improvement of wear characteristics of hot working tools: A review. International Journal of Precision Engineering and Manufacturing, 14(7), 1271–1283.

    Article  Google Scholar 

  6. Buchmayr, B. (2017). Damage, lifetime, and repair of forging dies. BHM Berg-und Hüttenmännische Monatshefte, 162(3), 88–93.

    Article  Google Scholar 

  7. Denkena, B., Dahlmann, D., & Boujnah, H. (2017). Tool deflection control by a sensory spindle slide for milling mach-ine tools. Procedia CIRP, 62, 329–334.

    Article  Google Scholar 

  8. Heo, S., Lee, M., Kim, S. H., Lee, W., & Min, B.-K. (2015). Compensation of tool deflection in micromilling using workpiece holder control device. International Journal of Precision Engineering and Manufacturing, 16(6), 1205–1208.

    Article  Google Scholar 

  9. Biermann, D., Krebs, E., Sacharow, A., & Kersting, P. (2012). Using NC-path deformation for compensating tool deflections in micromilling of hardened steel. Procedia CIRP, 1, 132–137.

    Article  Google Scholar 

  10. Qian, L., & Hossan, M. R. (2007). Effect on cutting force in turning hardened tool steels with cubic boron nitride inserts. Journal of Materials Processing Technology, 191(1–3), 274–278.

    Article  Google Scholar 

  11. de Lacalle, L. L., Lamikiz, A., Sanchez, J. A., & Salgado, M. A. (2004). Effects of tool deflection in the high-speed milling of inclined surfaces. The International Journal of Advanced Manufacturing Technology, 24(9–10), 621–631.

    Article  Google Scholar 

  12. Jeon, Y., Park, H. W., & Lee, C. M. (2014). Current research trends in external energy assisted machining. International Journal of Precision Engineering and Manufacturing, 14(2), 337–342.

    Article  Google Scholar 

  13. Lee, C.-M., Woo, W.-S., Kim, D.-H., Oh, W.-J., & Oh, N.-S. (2016). Laser-assisted hybrid processes: A review. International Journal of Precision Engineering and Manufacturing, 17(2), 257–267.

    Article  Google Scholar 

  14. Lee, C. M., Kim, D. H., Baek, J. T., & Kim, E. J. (2016). Laser assisted milling device: A review. International Journal of Precision Engineering and Manufacturing-Green Technology, 3(2), 199–208.

    Article  Google Scholar 

  15. Woo, W. S., & Lee, C. M. (2018). A study on the optimum machining conditions and energy efficiency of a laser-assisted fillet milling. International Journal of Precision Engineering and Manufacturing-Green Technology, 5(5), 593–604.

    Article  Google Scholar 

  16. Chiang, K. A., & Chen, Y. C. (2005). Laser surface hardening of H13 steel in the melt case. Materials Letters, 59(14–15), 1919–1923.

    Article  Google Scholar 

  17. Park, N.-R., & Ahn, D.-G. (2014). Wear characteristics of Stellite 6 and NOREM02 Hardfaced SKD61 hot working tool steel at the elevated temperature. International Journal of Precision Engineering and Manufacturing, 15(12), 2549–2558.

    Article  Google Scholar 

  18. Gupta, N., Ahirrao, S. B., Paul, S., & Singh, R. K. (2015). Modeling of micro-scale fiber laser hardening process and optimization via statistical approximation of the engineering models. International Journal of Precision Engineering and Manufacturing, 16(11), 2281–2287.

    Article  Google Scholar 

  19. Jinoop, A. N., Subbu, S. K., Paul, C. P., & Palani, I. A. (2019). Post-processing of laser additive manufactured Inconel 718 using laser shock peening. International Journal of Precision Engineering and Manufacturing. https://doi.org/10.1007/s12541-019-00147-4.

    Google Scholar 

  20. Leitz, K. H., Redlingshöfer, B., Reg, Y., Otto, A., & Schmidt, M. (2011). Metal ablation with short and ultrashort laser pulses. Physics Procedia, 12, 230.

    Article  Google Scholar 

  21. Jaeggi, B., Neuenschwander, B., Schmid, M., Muralt, M., Zuercher, J., & Hunziker, U. (2011). Influence of the pulse duration in the ps-regime on the ablation efficiency of metals. Physics Procedia, 12, 164–171.

    Article  Google Scholar 

  22. Chung, I. Y., Kim, J. D., & Kang, K. H. (2009). Ablation drilling of invar alloy using ultrashort pulsed laser. International Journal of Precision Engineering and Manufacturing, 10(2), 11–16.

    Article  Google Scholar 

  23. Hafiz, A. M. K., Bordatchev, E. V., & Tutunea-Fatan, R. O. (2012). Influence of overlap between the laser beam tracks on surface quality in laser polishing of AISI H13 tool steel. Journal of Manufacturing Processes, 14(4), 425–434.

    Article  Google Scholar 

  24. Lui, Y., Takai, M., Komuro, S., Shiokawa, T., & Aoyagi, Y. (1994). Surface cleaning of metals by pulsed-laser irradiation in air. Applied Physics A, 59(3), 281–288.

    Article  Google Scholar 

  25. Chen, G. X., Kwee, T. J., Tan, K. P., Choo, Y. S., & Hong, M. H. (2010). Laser cleaning of steel for paint removal. Applied Physics A, 101(2), 249–253.

    Article  Google Scholar 

  26. Moon, J.-H., Seo, P.-K., & Kang, C.-G. (2013). A study on mechanical properties of laser-welded blank of a boron sheet steel by laser ablation variable of Al-Si coating layer. International Journal of Precision Engineering and Manufacturing, 14(2), 283–288.

    Article  Google Scholar 

  27. Vedani, M., Previtali, B., Vimercati, G. M., Sanvito, A., & Somaschini, G. (2007). Problems in laser repair-welding a surface-treated tool steel. Surface and Coatings Technology, 201(8), 4518–4525.

    Article  Google Scholar 

  28. Heo, J., Min, H., & Lee, M. (2015). Laser micromachining of permalloy for fine metal mask. International journal of precision engineering and manufacturing-green technology, 2(3), 225–230.

    Article  Google Scholar 

  29. Fang, S., Lima, R., Sandoval, D., Bähre, D., & Llanes, L. (2018). Ablation investigation of cemented carbides using short-pulse laser. Procedia CIRP, 68, 172–177.

    Article  Google Scholar 

  30. Tan, J. L., Butler, D. L., Sim, L. M., & Jarfors, A. E. W. (2010). Effects of laser ablation on cemented tungsten carbide surface quality. Applied Physics A, 101, 265–269.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank MASUE Iron Works Co., Ltd. for providing the workpieces in experiments in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keiji Yamada.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jamkamon, K., Yamada, K., Inoue, T. et al. Improved Machinability of High Hardened Die Steel by Using Pulsed Laser Surface Treatment. Int. J. Precis. Eng. Manuf. 20, 1667–1676 (2019). https://doi.org/10.1007/s12541-019-00182-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12541-019-00182-1

Keywords

Navigation