Skip to main content

Performance Test for Laminated-Type Prosthetic Foot with Composite Plates

Abstract

Prosthetic feet with composite plates satisfy the gait requirements since they are able to provide additional energy for efficient walking when they dissipate stored elastic energy. In this study, laminated-type prosthetic foot with composite plates was designed with constant curvature and thickness according to the length, which tends to reduce the product price compared to the conventional one. Prosthetic foot was optimized using finite element analyses with ABAQUS/Standard in accordance with the performance test based on the KS P 8403 standard to improve bending characteristics in both sides such as the forefoot and the heel which are substantially equivalent performance compared to the LP Vari-Flex.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

References

  1. Sup, F., Varol, H. A., Mitchell, J., Withrow, T. J., & Goldfarb, M. (2009). Self-contained powered knee and ankle prosthesis: Initial evaluation on a transfemoral amputee. In IEEE international conference on rehabilitation robotics (pp. 638–644).

  2. Herr, H., & Wilkenfeld, A. (2003). User-adaptive control of a magnetorheological prosthetic knee. Industrial Robot, 30, 42–55.

    Article  Google Scholar 

  3. Nolan, L. (2008). Carbon fibre prostheses and running in amputees: A review. Foot and Ankle Surgery, 14, 125–129.

    Article  Google Scholar 

  4. Sup, F., Bohara, A., & Goldfarb, M. (2008). Design and control of a powered transfemoral prosthesis. The International Journal of Robotics Research, 27, 263–273.

    Article  Google Scholar 

  5. South, B. J., Fey, N. P., Bosker, G., & Neptune, R. R. (2009). Manufacture of energy storage and return prosthetic feet using selective laser sintering. Journal of Biomechanical Engineering, 132, 1–6.

    Article  Google Scholar 

  6. Scholz, M.-S., Blanchfield, J. P., Bloom, L. D., Coburn, B. H., Elkington, M., Fuller, J. D., et al. (2011). The use of composite materials in modern orthopaedic medicine and prosthetic devices: A review. Composites Science and Technology, 71, 1791–1803.

    Article  Google Scholar 

  7. Wing, D. C., & Hittenberger, D. A. (1989). Energy-storing prosthetic feet. Archives of Physical Medicine and Rehabilitation, 70, 330–335.

    Google Scholar 

  8. Einarsdottir, D. B. (2014). Strategic and financial valuation of Össur. 23 July 2014, p. 65. http://hdl.handle.net/10417/4544.

  9. Stier, B., Simon, J.-W., & Reese, S. (2015). Numerical and experimental investigation of the structural behavior of a carbon fiber reinforced ankle-foot orthosis. Medical Engineering & Physics, 37, 505–511.

    Article  Google Scholar 

  10. Jweeg, M. J., Hassan, S. S., & Hamid, A. S. (2015). Impact testing of new athletic prosthetic foot. International Journal of Current Engineering and Technology, 5, 121–127.

    Google Scholar 

  11. Cho, H. S., Cha, G. C., Park, J. K., Kim, S. K., Lee, S. M., Mun, M. S., et al. (2013). Design of carbon composite prosthetic feet using finite element methods. Journal of the Korean Society for Precision Engineering, 30, 769–776.

    Article  Google Scholar 

  12. Omasta, M., Palousek, D., Navrat, T., & Rosicky, J. (2012). Finite element analysis for the evaluation of the structural behaviour of a prosthesis for trans-tibial amputees. Medical Engineering & Physics, 34, 38–45.

    Article  Google Scholar 

  13. El-Mohandes, M. S., & El-Hussien, M. I. (2014). Stiffness analyses of modified niagara prosthetic feet using finite element modelling. In CIBEC 2014: 7th Cairo international biomedical engineering conference, Egypt (pp. 19–23).

  14. Bonnet, X., Pillet, H., Fode, P., Lavaste, F., & Skalli, W. (2012). Finite element modelling of an energy-storing prosthetic foot during the stance phase of transtibial amputee gait. Journal of Engineering in Medicine, 226, 70–75.

    Article  Google Scholar 

  15. Ansar, M., Xinwei, W., & Chouwei, Z. (2011). Modeling strategies of 3D woven composites: A review. Composite Structures, 93, 1947–1963.

    Article  Google Scholar 

  16. Roy, T., Manikandan, P., & Chakraborty, D. (2010). Improved shell finite element for piezothermoelastic analysis of smart fiber reinforced page 6 of 12 composite structures. Finite Elements in Analysis and Design, 46, 710–720.

    Article  Google Scholar 

  17. Moreira, R. A. S., Alves de Sousa, R. J., & Valente, R. A. F. (2010). A solid-shell layerwise finite element for non-linear geometric and material analysis. Composite Structures, 92, 1517–1523.

    Article  Google Scholar 

  18. Schwarze, M., & Reese, S. (2011). A reduced integration solid-shell finite element based on the EAS and the ANS concept—Large deformation problems. International Journal for Numerical Methods in Engineering, 85, 289–329.

    Article  MathSciNet  MATH  Google Scholar 

  19. Simon, J.-W., Stier, B., & Reese, S. (2015). Numerical analysis of layered fiber composites accounting for the onset of delamination. Advances in Engineering Software, 80, 4–11.

    Article  Google Scholar 

  20. ASTM D3039, Standard test method for tensile properties of polymer matrix composite materials, reapproved 2017.

  21. ASTM D412, Standard test methods for vulcanized rubber and thermoplastic elastomers—Tension, reapproved 2016.

  22. ASTM D790, Standard test methods for flexural properties of unreinforced and reinforced plastics and electrical insulating materials, reapproved 2017.

  23. KSSN KS P 8403, Prosthetic feet and ankle joints, reapproved 2017.

  24. Park, Y.-B., Nguyen, K.-H., Kweon, J.-H., Choi, J.-H., & Han, J.-S. (2011). Structural analysis of a composite target-drone. International Journal of Aeronautical and Space Sciences, 12, 84–91.

    Article  Google Scholar 

  25. Park, S. W., & Lee, D. G. (2010). Adhesion strength of glass/epoxy composite embedded with heat-treated carbon black on the surface. Composites Part A Applied Science and Manufacturing, 41, 1597–1604.

    Article  Google Scholar 

  26. Selvadurai, A. P. S. (2006). Deflections of a rubber membrane. Journal of the Mechanics and Physics of Solids, 54, 1093–1119.

    Article  MATH  Google Scholar 

  27. Menderes, H., & Konter, A. W. A. (1999). Advanced FE analysis of elastomeric automobile components under realistic loading conditions. In Proceedings of the first European conference on constitutive models for rubber (pp. 3–12).

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (2016R1C1B1006875). This work was also supported by the “Human Resources Program in Energy Technology” of the Korean Institute of Energy Technology Evaluation and Planning (KETEP), granted by the Ministry of Trade, Industry & Energy, Republic of Korea (No. 20174010201310).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonghun Yoon.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Song, Y., Choi, S., Kim, S. et al. Performance Test for Laminated-Type Prosthetic Foot with Composite Plates. Int. J. Precis. Eng. Manuf. 20, 1777–1786 (2019). https://doi.org/10.1007/s12541-019-00156-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12541-019-00156-3

Keywords

  • Prosthetic foot
  • Composite plate
  • Amputee
  • KS P 8403
  • Gait comfort