Skip to main content
Log in

Model-Based Compensation and Pareto-Optimal Trajectory Modification Method for Robotic Applications

  • Regular Paper
  • Published:
International Journal of Precision Engineering and Manufacturing Aims and scope Submit manuscript

Abstract

This study addresses the problem in accuracies of robot positioning and trajectory with compliance and geometric errors in robotic applications. A rigid–flexible coupling position error model of serial robot is presented to identify geometric and compliance error parameters simultaneously. On the basis of the error compensation model, the predicted position error can be corrected by the proposed hybrid error compensation method. Particular attention is paid to the deviation along the desired trajectory with respect to the corresponding updated trajectory, which is consecutively changing and cannot be corrected directly. A segmentation trajectory control method based on the Pareto-optimal with weighted-sum algorithm is proposed to solve the multi-objective optimisation problem in trajectory modification. The offline program optimiser integrates the proposed model-based compensation and trajectory modification method by MATLAB and VS software development platform. The method is developed to be an effective solution for the problem in absolute accuracies of positioning and trajectory with the experimental results achieved on a Staubli TX60L robot. Additional experiment is conducted with a Staubli RX160L robot to demonstrate the extensive feasibility and practical effectiveness of our approach for other industrial robots.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Pham, A.-D., & Ahn, H.-J. (2018). High precision reducers for industrial robots driving 4th industrial revolution: State of arts, analysis, design, performance evaluation and perspective. International Journal of Precision Engineering and Manufacturing-Green Technology, 5(4), 519–533.

    Article  Google Scholar 

  2. Zhao, Y., Lin, Y., Xi, F., & Guo, S. (2015). Calibration-based iterative learning control for path tracking of industrial robots. IEEE Transactions on Industrial Electronics, 62(5), 2921–2929.

    Article  Google Scholar 

  3. Klimchik, A., Furet, B., Caro, S., & Pashkevich, A. (2015). Identification of the manipulator stiffness model parameters in industrial environment. Mechanism and Machine Theory, 90, 1–22.

    Article  Google Scholar 

  4. Caro, S., Dumas, C., Garnier, S., & Furet, B. (2013). Workpiece placement optimization for machining operations with a KUKA KR270-2 Robot. In Proceedings of the IEEE international conference on, robotics and automation (ICRA), Karlsruhe, Germany (pp. 2921–2926).

  5. Gong, C., Yuan, J., & Ni, J. (2000). Nongeometric error identification and compensation for robotic system by inverse calibration. International Journal of Machine Tools and Manufacture, 40(14), 2119–2137.

    Article  Google Scholar 

  6. Chen, X., Zhang, Q., & Sun, Y. (2017). Intelligent selection and optimization of measurement poses for a comprehensive error model identification of 6-DOF serial robot. In Proceedings of the 2016 23rd international conference on, mechatronics and machine vision in practice (M2VIP), Nanjing, China. http://ieeexplore.ieee.org/document/7827279/.

  7. Filion, A., Joubair, A., Tahan, A. S., & Bonev, I. A. (2018). Robot calibration using a portable photogrammetry system. Robotics and Computer-Integrated Manufacturing, 49, 77–87.

    Article  Google Scholar 

  8. Chen, D., Yuan, P., Wang, T., Cai, Y., & Xue, L. (2018). A compensation method for enhancing aviation drilling robot accuracy based on co-kriging. International Journal of Precision Engineering and Manufacturing, 19(8), 1133–1142.

    Article  Google Scholar 

  9. Slavkovic, N. R., Milutinovic, D. S., & Glavonjic, M. M. (2014). A method for off-line compensation of cutting force-induced errors in robotic machining by tool path modification. International Journal of Advanced Manufacturing Technology, 70(9–12), 2083–2096.

    Article  Google Scholar 

  10. Angelidis, A., & Vosniakos, G. C. (2014). Prediction and compensation of relative position error along industrial robot end-effector paths. International Journal of Precision Engineering and Manufacturing, 15(1), 63–73.

    Article  Google Scholar 

  11. Chen, Y., Gao, J., Deng, H., Zheng, D., Chen, X., & Kelly, R. (2013). Spatial statistical analysis and compensation of machining errors for complex surfaces. Precision Engineering, 37(1), 203–212.

    Article  Google Scholar 

  12. Wu, C., Fan, J., Wang, Q., Pan, R., Tang, Y., & Li, Z. (2018). Prediction and compensation of geometric error for translational axes in multi-axis machine tools. The International Journal of Advanced Manufacturing Technology, 95(9–12), 3413–3435.

    Article  Google Scholar 

  13. Abele, E., Schützer, K., Bauer, J., & Pischan, M. (2012). Tool path adaption based on optical measurement data for milling with industrial robots. Production Engineering, 6, 459–465.

    Article  Google Scholar 

  14. Jang, J. H., Kim, S. H., & Kwak, Y. K. (2001). Calibration of geometric and non-geometric errors of an industrial robot. Robotica, 19(3), 311–321.

    Article  Google Scholar 

  15. Dumas, C., Caro, S., Garnier, S., & Furet, B. (2011). Joint stiffness identification of six-revolute industrial serial robots. Robotics and Computer-Integrated Manufacturing, 27(4), 881–888.

    Article  Google Scholar 

  16. Zhou, J., Nguyen, H. N., & Kang, H. J. (2014). Simultaneous identification of joint compliance and kinematic parameters of industrial robots. International Journal of Precision Engineering and Manufacturing, 15(11), 2257–2264.

    Article  Google Scholar 

  17. Lightcap, C., Hamner, S., Schmitz, T., & Banks, S. (2008). Improved positioning accuracy of the PA10-6CE robot with geometric and flexibility calibration. IEEE Transactions on Robotics, 24(2), 452–456.

    Article  Google Scholar 

  18. Du, G., Zhang, P., & Li, D. (2015). Online robot calibration based on hybrid sensors using Kalman filters. Robotics and Computer-Integrated Manufacturing, 31, 91–100.

    Article  Google Scholar 

  19. Gürsel, A., & Shirinzadeh, B. (2005). A systematic technique to estimate positioning errors for robot accuracy improvement using laser interferometry based sensing. Mechanism and Machine Theory, 40(8), 879–906.

    Article  MATH  Google Scholar 

  20. Wang, X., & Ding, Y. (2010). Adaptive real-time predictive compensation control for 6-DOF serial arc welding manipulator. Chinese Journal of Mechanical Engineering, 23(3), 361–366.

    Article  Google Scholar 

  21. Nubiola, A., & Bonev, I. A. (2013). Absolute calibration of an ABB IRB 1600 robot using a laser tracker. Robotics and Computer-Integrated Manufacturing, 29(1), 236–245.

    Article  Google Scholar 

  22. Joubair, A., & Bonev, I. A. (2015). Non-kinematic calibration of a six-axis serial robot using planar constraints. Precision Engineering, 40, 325–333.

    Article  Google Scholar 

  23. Yin, X., & Pan, L. (2018). Enhancing trajectory tracking accuracy for industrial robot with robust adaptive control. Robotics and Computer-Integrated Manufacturing, 51, 97–102.

    Article  Google Scholar 

  24. Liu, C., Negenborn, R. R., Zheng, H., & Chu, X. (2017). A state-compensation extended state observer for model predictive control. European Journal of Control, 36, 1–9.

    Article  MathSciNet  MATH  Google Scholar 

  25. Ilyukhin, Y. V., Poduraev, Y. V., & Tatarintseva, A. V. (2015). Nonlinear adaptive correction of continuous path speed of the tool for high efficiency robotic machining. Procedia Engineering, 25(1), 994–1002.

    Article  Google Scholar 

  26. Yu, L., Fei, S., Huang, J., & Gao, Y. (2014). Trajectory switching control of robotic manipulators based on RBF neural networks. Circuits, Systems, and Signal Processing, 33(4), 1119–1133.

    Article  MathSciNet  Google Scholar 

  27. Liu, Z., Xu, J., Cheng, Q., Zhao, Y., Pei, Y., & Yang, C. (2018). Trajectory planning with minimum synthesis error for industrial robots using screw theory. International Journal of Precision Engineering and Manufacturing, 19(2), 183–193.

    Article  Google Scholar 

  28. Wang, H., Gao, T., & Kinugawa, J. (2017). Finding measurement configurations for accurate robot calibration validation with a cable-driven robot. IEEE Transactions on Robotics, 33(5), 1156–1169.

    Article  Google Scholar 

Download references

Acknowledgements

This research is supported by National Natural Science Foundation of China (No. 51575236), and Postgraduate Research & Practice Innovation Program of Jiangsu Province (No. KYCX18_1840).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoyan Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Zhang, Q. & Sun, Y. Model-Based Compensation and Pareto-Optimal Trajectory Modification Method for Robotic Applications. Int. J. Precis. Eng. Manuf. 20, 1127–1137 (2019). https://doi.org/10.1007/s12541-019-00124-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12541-019-00124-x

Keywords

Navigation