Skip to main content
Log in

Au Nanoparticle Array Deposited Phase-Change Material for Optical Information Recording Using Field Enhancement Based on Localized Surface Plasmon Resonance

  • Regular Paper
  • Published:
International Journal of Precision Engineering and Manufacturing Aims and scope Submit manuscript

Abstract

In this study, we present a description of an Au nanobead array-based optical recoding mechanism using the near-field strong enhancement induced by localized surface plasmon resonance. Through a numerical Finite-Difference Time-Domain simulation, we find that a strong field enhancement by originating from the coupled plasmon mode can be induced between closely spaced Au nanoparticles (NPs) arranged on the top surface of a recording medium. The calculated maximum power density inside the recording layer in the case of the Au NPs’ density = 55% (λ = 658 nm) is ~ 56% higher than that of the case without the Au NP array. Moreover, our phase-change recording experiment using an Au NP array verifies the functionality of localized surface plasmon resonance-based optical recording.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

λ :

Wavelength

k:

Wave vector

c :

Velocity of electromagnetic wave

\(\tilde{\varepsilon }\) :

Complex relative permittivity

εα :

Infinite permittivity

εs :

Static permittivity

ω:

Angular frequency

σ:

Conductivity

τ:

Relaxation time

E :

Electric field amplitude

S:

Power density

R:

Reflectance

References

  1. Csáki, A., Möller, R., & Fritzsche, W. (2002). Gold nanoparticles as novel label for DNA diagnotics. Expert Review of Molecular Diagnostics, 2, 187–193.

    Article  Google Scholar 

  2. Fritzsche, W., Csáki, A., & Möller, R. (2002). Nanoparticle-based optical detection of molecular interactions for DNA-Chip technology. Proceedings of SPIE, 4626, 17.

    Article  Google Scholar 

  3. Csáki, A., Möller, R., Köhler, J. M., & Fritzsche, W. (2001). DNA monolayer on gold substrate characterized by nanoparticle labeling and scanning force microscopy. Nucleic Acids Research, 29(16), e81.

    Article  Google Scholar 

  4. Köhler, J. M., Csáki, A., Reichert, J., Möller, R., Straube, W., & Fritzsche, W. (2001). Selective labeling of oligonucleotide monolayers by metallic nanobeads for fast optical readout of DNA-chips. Sensors and Actuators B, 76, 166–172.

    Article  Google Scholar 

  5. Hutter, E., & Fendler, J. H. (2004). Exploitation of localized surface plasmon resonance. Advanced Material, 16(19), 1685–1706.

    Article  Google Scholar 

  6. Haes, A. J., Haynes, C. L., McFarland, A. D., Schatz, G. C., Van Duyne, R. P., & Zou, S. (2005). Plasmonic material for surface-enhanced sensing and spectroscopy. MRS Bulletin, 30, 368–375.

    Article  Google Scholar 

  7. Barnes, W. L., Dereux, A., & Ebbesen, T. W. (2003). Surface plasmon subwavelength optics. Nature, 424, 824–830.

    Article  Google Scholar 

  8. Kottmann, J. P., & Martin, O. J. F. (2001). Retardation-induced plasmon resonances in coupled nanoparticles. Optics Letter, 26(14), 1096–1098.

    Article  Google Scholar 

  9. Bohren, C. F., & Huffman, D. R. (1983). Absorption and scattering of light by small particles. New York: Wiley.

    Google Scholar 

  10. Kreibig, U., & Vollmer, M. (1995). Optical properties of metal clusters (Vol. 25). Berlin: Springer.

    Google Scholar 

  11. Blab, G. A., Cognet, L., Berciaud, S., Alexandre, I., Husar, D., Remacle, J., et al. (2006). Optical readout of gold nanoparticle-based DNA microarrays without silver enhancement. Biophysical Journal: Biophysical Letters, 90, L13.

    Article  Google Scholar 

  12. Haes, A. J., Hall, W. P., Chang, L., Klein, W. L., & Van Duyne, R. P. (2004). A localized surface plasmon resonance biosensor: First steps toward an assay for alzheimer’s disease. Nano Letters, 4(6), 1029–1034.

    Article  Google Scholar 

  13. Arai, T., Kumar, P. K. R., Rockstuhl, C., Awazu, K., & Tominaga, J. (2007). An optical biosensor based on localized surface plasmon resonance of silver nanostructured films. Journal of Optics A: Pure and Applied Optics, 9, 699–703.

    Article  Google Scholar 

  14. Endo, T., Yamamura, S., Nagatani, N., Morita, Y., Takamura, Y., & Tamiya, E. (2005). Localized surface plasmon resonance based optical biosensor using surface modified nanoparticle layer for label-free monitoring of antigen-antibody reaction. Science and Technology of Advanced Materials, 6, 491–500.

    Article  Google Scholar 

  15. Kim, K.-H., Lee, S.-Y., Kim, S.-K., Lee, S.-H., & Jeong, S.-G. (2007). A new DNA chip detection mechanism using optical pick-up actuators. Microsystem Technologies, 13, 1359–1369.

    Article  Google Scholar 

  16. Kim, S.-K., Li, X.-Z., Lee, S. B., Kim, K.-H., & Lee, S.-Y. (2008). Nano-pulsed laser irradiation scanning system for phase-change materials. Ultramicroscopy, 108, 1110–1114.

    Article  Google Scholar 

  17. Park, K.-H., Lee, S.-Q., Kim, E.-K., Moon, S.-E., Cho, Y.-H., Gokarna, A., et al. (2008). Bio-information scanning technology using an optical pick-up head. Ultramicroscopy, 108, 1319–1324.

    Article  Google Scholar 

  18. Kunz, K., & Lubbers, R. (1996). The finite difference time domain method for electromagnetics. Boca Raton: CRC Press.

    Google Scholar 

  19. Remcom Inc.: XFDTD 6.4 software (2006).

  20. Palik, E. D. (1996). Handbook of optical constants of solids. Orlando: Academic.

    Google Scholar 

  21. Wang, X., Kuwahara, M., Awazu, K., Fons, P., Tominaga, J., & Ohki, Y. (2009). Proposal of a grating-based optical reflection switch using phase change materials. Optics Express, 17(19), 1647–16956.

    Google Scholar 

  22. Long, G., & Genga, Y. (2012). Investigation of ZnS–SiO2/Ag/ZnS–SiO2 as high stable transparent and conductive multilayer films. Applied Surface Science, 263, 546–552.

    Article  Google Scholar 

  23. Su, K.-H., Wei, Q.-H., Zhang, X., Mock, J. J., Smith, D. R., & Schultz, S. (2003). Interparticle coupling effects on plasmon resonances of nanogold particles. Nano Letters, 3(8), 1087.

    Article  Google Scholar 

  24. Maier, S. A., Kik, P. G., & Atwater, H. A. (2002). Observation of coupled plasmon-polariton mode in Au nanoparticle chain waveguides of different length: Estimation of waveguide loss. Applied Physics Letters, 81(9), 1714–1716.

    Article  Google Scholar 

  25. David, C., Armand, M., & Aziz, M. M. (2006). Terabit-per-square-inch data storage using phase-change media and scanning electrical nanoprobes. IEEE Transactions on Nanotechnology, 5(1), 50–61.

    Article  Google Scholar 

  26. Hecht, E. (2002). Optics (4th ed.). Reading: Addison Wesley.

    Google Scholar 

Download references

Acknowledgements

This work was supported by research Grants from Daegu Catholic University in 2018.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sung-Mook Kang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, SM. Au Nanoparticle Array Deposited Phase-Change Material for Optical Information Recording Using Field Enhancement Based on Localized Surface Plasmon Resonance. Int. J. Precis. Eng. Manuf. 20, 267–272 (2019). https://doi.org/10.1007/s12541-019-00096-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12541-019-00096-y

Keywords

Navigation