Skip to main content
Log in

Optimization Design and Fabrication of Polymer Micro Needle by Hot Embossing Method

  • Regular Paper
  • Published:
International Journal of Precision Engineering and Manufacturing Aims and scope Submit manuscript

Abstract

This paper presents the design, fabrication and testing of a solid polymer microneedle. Mechanical behavior of the microneedle was simulated by ANSYS via the results of suffered and strength calculations. The results shows, that the maximum stresses of polymer MNs is far less than 3.183 MPa, which is the allowable pressure needed. Taguchi method was used help in data analysis and prediction of optimum parameter settings, a series of experiments were conducted to verify the impact of embossing temperature, embossing pressure, and embossing time on the microneedle’s quality. According to the result from the Taguchi experiment, S/N ratio is calculated to find the best combination settings for microneedle’s height. The highest value of S/N ratio (54.403) for product height is determined as optimal initial parameter settings, achieved by 130 °C, 11 MPa and 150 s for PMMA microneedle with optimized size of 550 µm height, 250 µm base diameter and 50 µm tip diameter. Embossing temperature and embossing pressure are the significant parameters in the experiment. The proposed method was verified by a set of experiments, the force for insertion as well as the modes of mechanical failure were examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Ganesan, A. V., Kumar, H., Swaminathan, S., Singh, K. K., Joy, R. A., Sood, N., et al. (2014). Analysis of MEMS-based microneedles for blood monitoring. Bionanoscience, 4(2), 128–135.

    Article  Google Scholar 

  2. Kaushik, S., Hord, A. H., Denson, D. D., McAllister, D. V., Smitra, S., Allen, M. G., et al. (2001). Lack of pain associated with microfabricated microneedles. Anesthesia & Analgesia, 92(2), 502–504.

    Article  Google Scholar 

  3. Prausnitz, M. R., & Langer, R. (2008). Transdermal drug delivery. Nature Biotechnology, 26(11), 1261.

    Article  Google Scholar 

  4. Prausnitz, M. R. (2001). Analysis: Overcoming skin’s barrier: The search for effective and user-friendly drug delivery. Diabetes Technology & Therapeutics, 3(2), 233–236.

    Article  Google Scholar 

  5. Fukushima, K., Yamazaki, T., Hasegawa, R., Ito, Y., Sugioka, N., & Takada, K. (2010). Pharmacokinetic and pharmacodynamic evaluation of insulin dissolving microneedles in dogs. Diabetes Technology & Therapeutics, 12(6), 465–474.

    Article  Google Scholar 

  6. Khanna, P., Strom, J. A., Malone, J. I., & Bhansali, S. (2008). Microneedle-based automated therapy for diabetes mellitus. Journal of Diabetes Science and Technology, 2(6), 1122–1129.

    Article  Google Scholar 

  7. Sullivan, S. P., Koutsonanos, D. G., del Pilar Martin, M., Lee, J. W., Zarnitsyn, V., Choi, S. O., et al. (2010). Dissolving polymer microneedle patches for influenza vaccination. Nature Medicine, 16(8), 915.

    Article  Google Scholar 

  8. Kim, Y. C., Park, J. H., & Prausnitz, M. R. (2012). Microneedles for drug and vaccine delivery. Advanced Drug Delivery Reviews, 64(14), 1547–1568.

    Article  Google Scholar 

  9. El-Laboudi, A., Oliver, N. S., Cass, A., & Johnston, D. (2013). Use of microneedle array devices for continuous glucose monitoring: A review. Diabetes Technology & Therapeutics, 15(1), 101–115.

    Article  Google Scholar 

  10. Worgull, M., Hétu, J. F., Kabanemi, K. K., & Heckele, M. (2008). Hot embossing of microstructures: Characterization of friction during demolding. Microsystem Technologies, 14(6), 767–773.

    Article  Google Scholar 

  11. Kolew, A., Münch, D., Sikora, K., & Worgull, M. (2011). Hot embossing of micro and sub-micro structured inserts for polymer replication. Microsystem Technologies, 17(4), 609–618.

    Article  Google Scholar 

  12. Fan, Y., Li, T., Lau, W. M., & Yang, J. (2012). A rapid hot-embossing prototyping approach using SU-8 molds coated with metal and antistick coatings. Journal of Microelectromechanical Systems, 21(4), 875–881.

    Article  Google Scholar 

  13. Wu, D., Sun, J., Liu, Y., Yang, Z., Xu, H., Zheng, X., et al. (2017). Rapid fabrication of microstructure on PMMA substrate by the plate to plate Transition-Spanning isothermal hot embossing method nearby glass transition temperature. Polymer Engineering & Science, 57(3), 268–274.

    Article  Google Scholar 

  14. Wilson, C. J., & Beck, P. A. (1996). Fracture testing of bulk silicon microcantilever beams subjected to a side load. Journal of Microelectromechanical Systems, 5(3), 142–150.

    Article  Google Scholar 

  15. Bodhale, D. W., Nisar, A., & Afzulpurkar, N. (2010). Design, fabrication and analysis of silicon microneedles for transdermal drug delivery applications. In The third, international conference on the development of biomedical engineering in Vietnam (pp. 84–89). Berlin, Heidelberg: Springer.

  16. Schuetz, Y. B., Naik, A., Guy, R. H., & Kalia, Y. N. (2005). Emerging strategies for the transdermal delivery of peptide and protein drugs. Expert Opinion on Drug Delivery, 2(3), 533–548.

    Article  Google Scholar 

  17. Bronaugh, R. L., & Maibach, H. L. (2005). Percutaneous absorption: Drugs, cosmetics, mechanisms, methods. Boca Raton: CRC Press.

    Book  Google Scholar 

  18. Kong, X. Q., Zhou, P., & Wu, C. W. (2011). Numerical simulation of microneedles’ insertion into skin. Computer Methods in Biomechanics and Biomedical Engineering, 14(9), 827–835.

    Article  Google Scholar 

  19. Davis, S. P., Landis, B. J., Adams, Z. H., Allen, M. G., & Prausnitz, M. R. (2004). Insertion of microneedles into skin: Measurement and prediction of insertion force and needle fracture force. Journal of Biomechanics, 37(8), 1155–1163.

    Article  Google Scholar 

  20. Davis, S. P., Landis, B. J., Adams, Z. H., Allen, M. G., & Prausnitz, M. R. (2004). Insertion of microneedles into skin: Measurement and prediction of insertion force and needle fracture force. Journal of Biomechanics, 37(8), 1155–1163.

    Article  Google Scholar 

  21. Berins, M. (Ed.). (1991). Plastics engineering handbook of the society of the plastics industry (5th ed.). Berlin: Springer.

    Google Scholar 

  22. Lu, C., Cheng, M. M. C., Benatar, A., & Lee, L. J. (2007). Embossing of high-aspect-ratio-microstructures using sacrificial templates and fast surface heating. Polymer Engineering & Science, 47(6), 830–840.

    Article  Google Scholar 

  23. Lewis, W. (2014). Is microneedling really the next big thing? Practice.

  24. Esch, M. B., Kapur, S., Irizarry, G., & Genova, V. (2003). Influence of master fabrication techniques on the characteristics of embossed microfluidic channels. Lab on a Chip, 3(2), 121–127.

    Article  Google Scholar 

  25. Bodhale, D. W., Nisar, A., & Afzulpurkar, N. (2010). Structural and microfluidic analysis of hollow side-open polymeric microneedles for transdermal drug delivery applications. Microfluidics and Nanofluidics, 8(3), 373–392.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samir Sghayer Abubaker.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abubaker, S.S., Zhang, Y. Optimization Design and Fabrication of Polymer Micro Needle by Hot Embossing Method. Int. J. Precis. Eng. Manuf. 20, 631–640 (2019). https://doi.org/10.1007/s12541-019-00095-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12541-019-00095-z

Keywords

Navigation