Advertisement

A Pulse Inversion-Based Nonlinear Ultrasonic Technique using a Single-Cycle Longitudinal Wave for Evaluating Localized Material Degradation in Plates

  • Sungho Choi
  • Pureun Lee
  • Kyung-Young JhangEmail author
Regular Paper
  • 107 Downloads

Abstract

General nonlinear ultrasonic techniques (NUTs) use tone-burst ultrasonic waves with a narrow bandwidth so that the fundamental frequency component and the second-order harmonic component can be clearly separated in the frequency domain. Meanwhile, when using a longitudinal wave propagating in the thickness direction, the number of cycles of tone-burst signals can be limited by the object thickness. In some cases, only a pulsed signal or a single-cycle signal, which has broad bandwidth, may be applicable to avoid superposition of the first transmitted wave and the multi-reflected waves. Such cases complicate the use of general NUTs, and it is necessary to apply a method to precisely extract the second-order harmonic component even in broadband signals to the NUT. In this study, the pulse inversion (PI) method, which can extract only even harmonics or odd harmonics by superposing or subtracting two wave signals obtained from 180° out-of-phase inputs, is applied to an NUT using broadband ultrasound. The performance of the PI-based NUT with respect to material degradation is verified using a series of heat-treated aluminum alloy specimens with various levels of precipitates. The experimental results show that the nonlinearity parameters measured with single-cycle signals agree well with the previous well-validated experimental results obtained using narrowband signals. Next, the PI-based NUT is used to assess the localized material degradation of a stainless steel plate subjected to high-cycle fatigue. The experimental results show that the profile of the measured nonlinearity parameters as a function of scan position is consistent with the intended distribution of localized fatigue damage, which demonstrates the potential feasibility of the proposed technique for evaluation of localized material degradation in plates.

Keywords

Nonlinear ultrasonic technique Pulse inversion Localized material degradation Acoustic nonlinearity parameter Plates 

List of symbols

A1

Displacement amplitude of the fundamental wave

A1

Electric signal amplitude of the fundamental wave

A2

Displacement amplitude of the second-order harmonic wave

A2

Electric signal amplitude of the second-order harmonic wave

k

Wavenumber

t

Time

u

Displacement

x

Wave propagation distance

β

Acoustic nonlinearity parameter

β’

Relative acoustic nonlinearity parameter

ω

Angular frequency

Notes

Acknowledgements

This work was supported by the research fund of Hanyang University (HY-2017), and the National Research Foundation of Korea (NRF) Grant funded by the Korean Government (NRF-2013M2A2A9043241).

References

  1. 1.
    Kim, C. (2012). Creep damage characterization of Ni-based superalloy by acoustic nonlinearity. Progress in Natural Science, 22(4), 303–310.CrossRefGoogle Scholar
  2. 2.
    Balasubramaniam, K., Valluri, J. S., & Prakash, R. V. (2011). Creep damage characterization using a low amplitude nonlinear ultrasonic technique. Materials Characterization, 62(3), 275–286.CrossRefGoogle Scholar
  3. 3.
    Valluri, J. S., Balasubramaniam, K., & Prakash, R. V. (2010). Creep damage characterization using non-linear ultrasonic techniques. Acta Materialia, 58(6), 2079–2090.CrossRefGoogle Scholar
  4. 4.
    Zhang, J., & Xuan, F. (2014). Fatigue damage evaluation of austenitic stainless steel using nonlinear ultrasonic waves in low cycle regime. Journal of Applied Physics, 115(20), 204906.CrossRefGoogle Scholar
  5. 5.
    Nam, T., Choi, S., Lee, T., Jhang, K., & Kim, C. (2010). Acoustic nonlinearity of narrowband laser-generated surface waves in the bending fatigue of Al6061 alloy. Journal of the Korean Physical Society, 57(5), 1212–1217.CrossRefGoogle Scholar
  6. 6.
    Kim, J., Jacobs, L. J., Qu, J., & Littles, J. W. (2006). Experimental characterization of fatigue damage in a nickel-base superalloy using nonlinear ultrasonic waves. Journal of the Acoustic Society of America, 120(3), 1266–1273.CrossRefGoogle Scholar
  7. 7.
    Xiang, Y., Deng, M., & Xuan, F. (2014). Thermal degradation evaluation of HP40Nb alloy steel after long term service using a nonlinear ultrasonic technique. Journal of Nondestructive Evaluation, 33(2), 279–287.CrossRefGoogle Scholar
  8. 8.
    Xiang, Y., Deng, M., Xuan, F., & Liu, C. (2011). Experimental study of thermal degradation in ferritic Cr–Ni alloy steel plates using nonlinear Lamb waves. NDT&E International, 44(8), 768–774.CrossRefGoogle Scholar
  9. 9.
    Kim, C., Park, I., & Jhang, K. (2009). Nonlinear ultrasonic characterization of thermal degradation in ferritic 2.25Cr-1Mo steel. NDT&E International, 42(3), 204–209.CrossRefGoogle Scholar
  10. 10.
    Choi, S., Seo, H., & Jhang, K. (2015). Noncontact evaluation of acoustic nonlinearity of a laser-generated surface wave in a plastically deformed aluminum alloy. Research in Nondestructive Evaluation, 26(1), 13–22.CrossRefGoogle Scholar
  11. 11.
    Punnose, S., Mukhopadhyay, A., Sarkar, R., & Kumar, V. (2014). Characterisation of microstructural damage evolution during tensile deformation of a near-α titanium alloy: Effects of microtexture. Materials Science and Engineering: A Structural Materials: Properties, Microstructure and Processing, 607, 476–481.CrossRefGoogle Scholar
  12. 12.
    Jhang, K. (2009). Nonlinear ultrasonic techniques for nondestructive assessment of micro damage in material: A review. International Journal of Precision Engineering and Manufacturing, 10(1), 123–135.CrossRefGoogle Scholar
  13. 13.
    Cantrell, J. H., & Yost, W. T. (2001). Nonlinear ultrasonic characterization of fatigue microstructures”. International Journal of Fatigue, 23, 487–490.CrossRefGoogle Scholar
  14. 14.
    Hikata, A., Chick, B. B., & Elbaum, C. (1965). Dislocation contribution to the second harmonic generation of ultrasonic waves. Journal of Applied Physics, 36, 229–236.CrossRefGoogle Scholar
  15. 15.
    Matlack, K. H., Bradley, H. A., Thiele, S., Kim, J., Wall, J. J., Jung, H., et al. (2015). Nonlinear ultrasonic characterization of precipitation in 17-4PH stainless steel. NDT&E International, 71, 8–15.CrossRefGoogle Scholar
  16. 16.
    Mondal, C., Mukhopadhyay, A., & Sarkar, R. (2010). A study on precipitation characteristics induced strength variation by nonlinear ultrasonic parameter. Journal of Applied Physics, 108(12), 124910.CrossRefGoogle Scholar
  17. 17.
    Kim, C., & Lissenden, C. J. (2009). Precipitate contribution to the acoustic nonlinearity in nickel-based superalloy. Chinese Physics Letters, 26(8), 086107.CrossRefGoogle Scholar
  18. 18.
    Mini, R. S., Balasubramaniam, K., & Ravindran, P. (2015). An experimental investigation on the influence of annealed microstructure on wave propagation. Experimental Mechanics, 55(6), 1023–1030.CrossRefGoogle Scholar
  19. 19.
    Matlack, K. H., Wall, J. J., Kim, J., Qu, J., Jacobs, L. J., & Viehrig, H. (2012). Evaluation of radiation damage using nonlinear ultrasound. Journal of Applied Physics, 111(5), 054911.CrossRefGoogle Scholar
  20. 20.
    Rose, J. L. (2014). Ultrasonic guided waves in solid media. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  21. 21.
    Krishnan, S., & O’Donnell, M. (1996). Transmit aperture processing for nonlinear contrast agent imaging. Ultrasonic Imaging, 18(2), 77–105.CrossRefGoogle Scholar
  22. 22.
    Ohara, Y., Kawashima, K., Yamada, R., & Horio, H. (2004). Evaluation of amorphous diffusion bonding by nonlinear ultrasonic method. AIP Conference Proceedings, 700, 944–951.CrossRefGoogle Scholar
  23. 23.
    Viswanath, A., Rao, B. P. C., Mahadevan, S., Jayakumar, T., & Raj, B. (2010). Microstructural characterization of M250 grade maraging steel using nonlinear ultrasonic technique. Journal Materials Science, 45(24), 6719–6726.CrossRefGoogle Scholar
  24. 24.
    Xie, F., Guo, Z., & Zhang, J. (2014). Strategies for reliable second harmonic of nonlinear acoustic wave through cement-based materials. Nondestructive Testing and Evaluation, 29(3), 183–194.CrossRefGoogle Scholar
  25. 25.
    Kim, J., Jhang, K., & Kim, C. (2018). Dependence of nonlinear ultrasonic characteristic on second-phase precipitation in heat-treated Al 6061-T6 alloy. Ultrasonics, 82, 84–90.CrossRefGoogle Scholar
  26. 26.
    Cantrell, J. H., & Zhang, X. (1998). Nonlinear acoustic response from precipitate-matrix misfit in a dislocation network. Journal of Applied Physics, 84, 5469–5472.CrossRefGoogle Scholar

Copyright information

© Korean Society for Precision Engineering 2019

Authors and Affiliations

  1. 1.School of Mechanical EngineeringHanyang UniversitySeoulSouth Korea

Personalised recommendations