Skip to main content
Log in

Performance Analysis on Solar Concentrating Thermoelectric Generator Coupled with Heat Sink

  • Regular Paper
  • Published:
International Journal of Precision Engineering and Manufacturing Aims and scope Submit manuscript

Abstract

The usage of thermoelectric generators (TEGs) is rapidly increasing where the waste heat exists. Today, many experiments are being conducted to investigate solar energy systems with waste heat. This work focuses on the performance of an individual TEG via a spot Fresnel lens. Therefore, an experimental system was constructed so that the TEG module could show high performance under the concentrated solar radiation. For this aim, the system was adapted to one-axis sun tracking system for receiving maximum solar irradiation. It was observed that the obtained experimental values of the parameters such as open circuit voltage, hot side temperature and cold side temperature of the TEG module are consistent with the collected solar values. The experimental data was collected at GPS coordinates of 41°14′N and 36°26′E (Samsun, Turkey) on 8th of September, 2017. The maximum open circuit voltage value was obtained as 0.822 V.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

Th :

Thermoelectric hot side temperature (°C)

Tc :

Thermoelectric cold side temperature (°C)

Rint :

Internal resistance of the TE module (Ω)

If :

Solar flux irradiance (W/m2) for Fresnel lens

Voc :

Open circuit voltage (V)

αTEG :

Seebeck coefficient of the used TEG

Pmax :

Maximum output power (W)

ηe :

Electrical efficiency (%)

Qc :

Heat transfer to coolant water (W)

Qin :

Heating power (W)

mc :

Mass flow rate (g/s)

ηt :

Thermal efficiency (%)

Tout :

Outlet temperature of coolant (°C)

Tin :

Inlet temperature of coolant (°C)

ITEG :

Thermoelectric current source

References

  1. Fabian, D., Youri, M., & Hugo, T. (2010). Down scaling of micro-structured Fresnel lenses for solar concentration: A quantitative investigation. In Proceedings of the SPIE 7725, photonics for solar energy systems III, 772509. https://doi.org/10.1117/12.853793.

  2. Algora, C., Ortiz, E., Rey-Stolle, I., Diaz, V., Pena, R., Andreev, V., et al. (2001). A GaAs solar cell with an efficiency of 26.2% at 1000 suns and 25.0% at 2000 suns. IEEE Transactions on Electron Devices, 48(5), 840–844.

    Article  Google Scholar 

  3. Perini, S., Tonnellier, X., King, P., & Sansom, C. (2017). Theoretical and experimental analysis of an innovative dual-axis tracking linear Fresnel lenses concentrated solar thermal collector. Solar Energy, 153, 679–690.

    Article  Google Scholar 

  4. Sobhansarbandi, S., Martinez, P. M., Papadimitratos, A., Zakhidov, A., & Hassanipour, F. (2017). Evacuated tube solar collector with multifunctional absorber layers. Solar Energy, 146, 342–350.

    Article  Google Scholar 

  5. Hussain, M. I., Ali, A., & Lee, G. H. (2015). Performance and economic analyses of linear and spot Fresnel lens solar collectors used for greenhouse heating in South Korea. Energy, 90, 1522–1531.

    Article  Google Scholar 

  6. Karimi, F., Xu, H., Wang, Z., Chen, J., & Yang, M. (2017). Experimental study of a concentrated PV/T system using linear Fresnel lens. Energy, 123, 402–412.

    Article  Google Scholar 

  7. Young Joo, J., & Kyu Lee, S. (2009). Miniaturized TIR Fresnel lens for miniature optical LED applications. International Journal of Precision Engineering and Manufacturing, 10(2), 137–140.

    Article  Google Scholar 

  8. Kim, H., Lee, Y., & Lee, K. H. (2012). Design of a thermoelectric layer for a micro power generator. International Journal of Precision Engineering and Manufacturing, 13(2), 261–267.

    Article  Google Scholar 

  9. Montecucco, A., Siviter, J., & Knox, A. R. (2014). The effect of temperature mismatch on thermoelectric generators electrically connected in series and parallel. Applied Energy, 123, 47–54.

    Article  Google Scholar 

  10. Rowe, D. M., & Min, G. (1998). Evaluation of thermoelectric modules for power generation. Journal of Power Sources, 73, 193–198.

    Article  Google Scholar 

  11. Liang, G., Zhou, J., & Huang, X. (2011). Analytical model of parallel thermoelectric generator. Applied Energy, 88, 5193–5199.

    Article  Google Scholar 

  12. Date, A., Date, A., Dixon, C., & Akbarzadeh, A. (2014). Theoretical and experimental study on heat pipe cooled thermoelectric generators with water heating using concentrated solar thermal energy. Solar Energy, 105, 656–668.

    Article  Google Scholar 

  13. Al-Nimr, M. A., Al-Ammari, W. A., & Dahdolan, M.-E. (2017). Utilizing the evaporative cooling to enhance the performance of a solar TEG system and to produce distilled water. Solar Energy, 146, 209–220.

    Article  Google Scholar 

  14. Jaworski, M., Bednarczyk, M., & Czachor, M. (2016). Experimental investigation of thermoelectric generator (TEG) with PCM module. Applied Thermal Engineering, 96, 527–533.

    Article  Google Scholar 

  15. Riffat, S. B., & Ma, X. (2003). Thermoelectrics: A review of present and potential applications. Applied Thermal Engineering, 23, 913–935.

    Article  Google Scholar 

  16. Liu, Z., Zhu, S., Ge, Y., Shan, F., Zeng, L., & Liu, W. (2017). Geometry optimization of two-stage thermoelectric generators using simplified conjugate-gradient method. Applied Energy, 190, 540–552.

    Article  Google Scholar 

  17. Banakar, A., Motevali, A., Emad, M., & Ghobadian, B. (2017). Co-generation of heat and power in a thermoelectric system equipped with Fresnel lens collectors using active and passive cooling techniques. Renewable Energy, 112, 268–279.

    Article  Google Scholar 

  18. Köysal, Y., Özdemir, A. E., & Atalay, T. (2018). Experimental and modeling study on solar system using linear fresnel lens and thermoelectric module. Journal of Solar Energy Engineering, 140(6), 061003–061003-11. https://doi.org/10.1115/1.4039777.

    Article  Google Scholar 

  19. He, W., Zhang, G., Li, G., & Ji, J. (2015). Analysis and discussion on the impact of non-uniform input heat flux on thermoelectric generator array. Energy Conversion and Management, 98, 268–274.

    Article  Google Scholar 

  20. Candadai, A. A., Kumar, V. P., & Barshilia, H. C. (2016). Performance evaluation of a natural convective-cooled concentration solar thermoelectric generator coupled with a spectrally selective high temperature absorber coating. Solar Energy Materials and Solar Cells, 145, 333–341.

    Article  Google Scholar 

  21. Messenger, R. A., & Ventre, J. (2004). Photovoltaic systems engineering. London: CRC Press.

    Google Scholar 

  22. Nia, M. H., Nejad, A. A., Goudarzi, A., Valizadeh, M., & Samadian, P. (2014). Cogeneration solar system using thermoelectric module and Fresnel lens. Energy Conversion and Management, 84, 305–310.

    Article  Google Scholar 

  23. Mastbergen, D. (2008). Development and optimization of a stove-powered thermoelectric generator. Colorado: Phd, Colorado State University.

    Google Scholar 

  24. Özdemir, A. E., Köysal, Y., Özbaş, E., & Atalay, T. (2015). The experimental design of solar heating thermoelectric generator with wind cooling chimney. Energy Conversion and Management, 98, 127–133.

    Article  Google Scholar 

  25. http://tecteg.com/wp-content/uploads/2014/09/SpecTEG1-12611-8.0Thermoelectric-generator.pdf. Accessed December 21 2017.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yavuz Köysal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Köysal, Y. Performance Analysis on Solar Concentrating Thermoelectric Generator Coupled with Heat Sink. Int. J. Precis. Eng. Manuf. 20, 313–318 (2019). https://doi.org/10.1007/s12541-019-00060-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12541-019-00060-w

Keywords

Navigation