Skip to main content
Log in

Design for Powder Metallurgy: Predicting Anisotropic Dimensional Change on Sintering of Real Parts

  • Regular Paper
  • Published:
International Journal of Precision Engineering and Manufacturing Aims and scope Submit manuscript

Abstract

Anisotropic dimensional change on sintering may strongly affect the precision of parts produced by press and sinter. In previous work a design procedure accounting for anisotropic dimensional change of axi-symmetric parts (disks and rings) has been developed on the basis of experimental data. In this work the procedure has been applied to predict the anisotropic dimensional change of real parts produced in industrial conditions, providing that coaxial rings were identified in the geometry of the actual parts. Parts were highly different for material, complexity of geometry, green density and process conditions. Parts were measured in the green and sintered state and the measured dimensional changes were compared to the predicted ones, finding a good agreement. The procedure was also adapted to predict dimensional change of an oval feature, and highly satisfactory results were obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

Abbreviations

h:

Height of the part (mm)

hg :

Height of the green part (mm)

hs :

Height of the sintered part (mm)

εh :

Dimensional change in height

ϕext :

External diameter (mm)

ϕext g :

External diameter of the green part (mm)

ϕext s :

External diameter of the sintered part (mm)

εϕ ext :

Dimensional change in the external diameter

ϕint :

Internal diameter of the part (mm)

ϕint g :

Internal diameter of the green part (mm)

ϕint s :

Internal diameter of the sintered part (mm)

εϕ int :

Dimensional change in the internal diameter

εiso :

Isotropic dimensional change

Vg :

Volume of the green part (mm3)

Vs :

Volume of the sintered part (mm3)

R:

Ratio between the internal and the external diameter in the green parts

α:

Geometrical parameter relating the dimensional changes

γ:

Geometrical parameter relating R and α

K:

Anisotropy parameter

References

  1. Cristofolini, I., Corsentino, N., Larsson, M., & Molinari, A. (2016). Analytical model of the anisotropic dimensional change on sintering of ferrous pm parts. Powder Metallurgy Progress, 16(1), 27–39.

    Article  Google Scholar 

  2. Cristofolini, I., Menapace, C., Cazzolli, M., Rao, A., Pahl, W., & Molinari, A. (2012). The effect of anisotropic dimensional change on the precision of steel parts produced by powder metallurgy. Journal of Materials and Processing Technologies, 7(212), 1513–1519.

    Article  Google Scholar 

  3. Menapace, C., Larsson, M., Torresani, E., Cristofolini, I., & Molinari, A. (2012). Study of anisotropy during sintering of ferrous alloys. In Proceedings PM2012, 2012 powder metallurgy world congress and exhibition. Yokohama.

  4. Cristofolini, I., Pilla, M., Molinari, A., Menapace, C., & Larsson, M. (2012). DOE investigation of anisotropic dimensional change during sintering of iron–copper–carbon. The International Journal of Powder Metallurgy, 48(4), 37–43.

    Google Scholar 

  5. Cristofolini, I., Pilla, M., Larsson, M., & Molinari, A. (2012). A DOE analysis of dimensional change on sintering of a 3%Cr–0.5%Mo–x%C steel and its effect on dimensional and geometrical precision. Powder Metallurgy Progress, 3(12), 127–143.

    Google Scholar 

  6. Cristofolini, I., Corsentino, N., Molinari, A., & Larsson, M. (2014). Study of the influence of material and geometry on the anisotropy of dimensional change on sintering of powder metallurgy parts. International Journal of Precision Engineering and Manufacturing, 15(9), 1865–1873.

    Article  Google Scholar 

  7. Corsentino, N., Menapace, C., Cristofolini, I., Pilla, M., Larsson, M., & Molinari, A. (2015). The influence of the liquid phase on anisotropic dimensional change on sintering of iron alloys. The International Journal of Powder Metallurgy, 51(2), 27–37.

    Google Scholar 

  8. Cristofolini, I., Pilla, M., Rao, A., Libardi, S., & Molinari, A. (2013). Dimensional and geometrical precision of powder metallurgy parts sintered and sinter hardened at high temperature. International Journal of Precision Engineering and Manufacturing, 14(10), 1735–1742.

    Article  Google Scholar 

  9. Emanuelli, L., Menapace, C., Cristofolini, I., Molinari, A., & Larsson, M. (2014). Influence of sintering temperature on shrinkage anisotropy in Cr–Mo low alloy steel green compacts. Advances in Powder Metallurgy and Particulate Materials, 5, 99–107.

    Google Scholar 

  10. Cristofolini, I., Corsentino, N., Molinari, A., & Larsson, M. (2015). Influence of geometry and process variables on the anisotropy parameter K. Advances in Powder Metallurgy and Particulate Materials, 01, 31–40.

    Google Scholar 

  11. Corsentino, N., Cristofolini, I., Libardi, S., & Molinari, A. Effect of high sintering temperature on the dimensional and geometrical precision of PM Cr–Mo steel parts. In Proceedings EURO PM2014 congress and exhibition, Salzburg 21–24 September 2014. Shrewsbury: EPMA. 13_P2_EP140145.

  12. Griffo, A., Ko, J., & German, R. M. (1994). Critical assessment of variables affecting the dimensional behavior in sintered iron–copper–carbon alloys. Advances in Powder Metallurgy and Particulate Materials, 3, 221–236.

    Google Scholar 

  13. Bernardo, E., Campos, M., Torralba, J. M., Gierl, C., Danninger, H., & Frykholm, R. (2013). Lean steels modified with a new Cu-based master alloy: Influence of process parameters in dimensional and sintering behavior. In Proceedings Euro PM 2013, international powder metallurgy congress and exhibition, 15–18 September 2013. Gothenburg.

  14. De Oro Calderon, R., Gierl, C., & Danninger, H. (2016). Dimensional stability of sintered steels containing low melting point master alloys. In Proceedings world PM 2016 congress and exhibition, 9–13 October 2016. Hamburg.

  15. Sainz, S, Bilbao, C., Veiga, A., & Castro, F. (2016). Enhanced control of dimensional change and mechanical properties of Fe–Cu–C PM steels under optimized sintering cycle. In: Proceedings world PM 2016 congress and exhibition, 9–13 October 2016. Hamburg

  16. Bilbao, C., Sainz, S., Veiga, A., & Castro, F. (2015). Microstructural development and effect of different Cu/C contents on dimensional changes during sintering of PM steels. Powder Metallurgy, 58(5), 328–334.

    Article  Google Scholar 

  17. Bernardo, E., Oro, R., Campos, M., Frykholm, R., Litström, O., & Torralba, J. M. (2012). Effect of liquid content on dimensional stability and sinter properties of liquid-phase sintered low alloyed steels. In Proceedings of the international Euro powder metallurgy congress and exhibition, Euro PM 2012, 16–19 September 2012 (Vol. 1). Basel

  18. Molinari, A., Menapace, C., Torresani, E., Cristofolini, I., & Larsson, M. (2013). Working hypothesis for origin of anisotropic sintering shrinkage caused by prior uniaxial cold compaction. Powder Metallurgy, 56(3), 189–195.

    Article  Google Scholar 

  19. Molinari, A., Torresani, E., Menapace, C., Cristofolini, I., & Larsson, M. (2013). A study of sintering shrinkage kinetics of cold compacted ferrous green parts. Advances in Powder Metallurgy and Particulate Materials, 5, 25–32.

    Google Scholar 

  20. Molinari, A., Baselli, S., Torresani, E., Cristofolini, I., & Larsson, M. (2016). The shrinkage of uniaxially cold compacted iron green parts. In Proceedings world PM2016 congress and exhibition, Hamburg 9–13 October 2016. Shrewsbury: EPMA. 13_P2_EP3302140.

  21. Molinari, A., Bisoffi, E., Menapace, C., & Torralba, J. (2014). Shrinkage kinetics during early stage sintering of cold isostatically compacted iron powder. Powder Metallurgy, 57(1), 61–69.

    Article  Google Scholar 

  22. Molinari, A., Torresani, E., Menapace, C., & Larsson, M. (2015). The anisotropy of dimensional change on sintering of iron. Journal of the American Ceramic Society, 98(11), 3431–3437.

    Article  Google Scholar 

  23. Baselli, S., & Molinari, A. (2017). The geometrical model of sintering. In CD proceedings EuroPM2017 congress and exhibition, Milano (Italy) 1–5 October 2017. Shrewsbury: EPMA.

  24. Zavaliangos, A., & Bouvard, D. (2000). Numerical simulation of anisotropy in sintering due to prior compaction. The International Journal of Powder Metallurgy, 36(7), 58–65.

    Google Scholar 

  25. Zavaliangos, A., Missiaen, J. M., & Bouvard, D. (2006). Anisotropy in shrinkage during sintering. Science of Sintering, 38, 13–25.

    Article  Google Scholar 

  26. Torresani, E., Cristofolini, I., & Molinari, A. (2015). Study of the anisotropic microstructure of the uniaxially cold compacted green parts. Advances in Powder Metallurgy and Particulate Materials, 3, 9–18.

    Google Scholar 

  27. Molinari, A., Amirabdollahian, S., Cristofolini, I., & Federici, M. (2016). Influence of powder deformation on anisotropy of sintering shrinkage. Advances in Powder Metallurgy and Particulate Materials, 1, 45–52.

    Google Scholar 

  28. Molinari, A., Zago, M., Amirabdollahian, S., Cristofolini, I., & Larsson, M. (2017) Anisotropic sintering shrinkage of ring shaped iron parts: effect of geometry and green density and correlation to the stress field during uniaxial cold compaction. In Proceedings EURO PM2017 congress and exhibition, Milan 1–4 October 2017. Shrewsbury: EPMA. 33686349.

  29. Amirabdollahian, S., Deirmina, F., & Molinari, A., Study of the pores characteristics in the uniaxially cold compacted green parts by image analysis. In CD proceedings world PM2016 Hamburg (Germany) 9–13 October 2016. Shrewsbury: EPMA.

  30. Molinari, A., & Torresani, E. (2015). Preliminary study to determine the sintering stress from microstructural analysis of green parts. Powder Metallurgy, 58(5), 323–327.

    Article  Google Scholar 

  31. Olevsky, E. A. (1998). Theory of sintering: From Discrete to Continuum. Materials Science and Engineering Reports, 23, 41–100.

    Article  Google Scholar 

  32. Bordia, R. K., Zuo, R., Guillon, O., Salamone, S. M., & Rodel, J. (2006). Anisotropic constitutive laws for sintering bodies. Acta Materialia, 54, 111–118.

    Article  Google Scholar 

  33. Wakai, F., Chihara, K., & Yoshida, M. (2007). Anisotropic shrinkage induced by particle rearrangement in sintering. Acta Materialia, 55, 4553–4566.

    Article  Google Scholar 

  34. Wakai, F., & Shinoda, Y. (2009). Anisotropic sintering stress for sintering of particles arranged in orthotropic symmetry. Acta Materialia, 57, 3955–3964.

    Article  Google Scholar 

  35. Cristofolini, I., Corsentino, N., Pilla, M., Molinari, A., & Larsson, M. (2013). Influence of geometry on the anisotropic dimensional change on sintering of PM parts. Advances in Powder Metallurgy and Particulate Materials, 11, 49–61.

    Google Scholar 

  36. Raman, R., Zahrah, T. F., Weaver, T. J., & German, R. M. (1999). Predicting dimensional change during sintering of FC0208 parts. Advances in Powder Metallurgy and Particulate Materials, 1(3), 115–122.

    Google Scholar 

  37. Corsentino, N., Cristofolini, I., Larsson, M., Libardi, S., & Molinari, A. (2015). Anisotropy of the dimensional variation of sintered parts: a predictive model and a statistical evaluation of its reliability. In Proceedings EURO PM2015 congress and exhibition, Reims 4–7 October 2015. Shrewsbury: EPMA. 3213322.

  38. Cristofolini, I., Corsentino, N., Molinari, A., & Larsson, M. (2014). A design procedure accounting for the anisotropic dimensional change on sintering of ferrous PM parts. Advances in Powder Metallurgy and Particulate Materials, 01, 115–127.

    Google Scholar 

  39. ISO 10360-4. (2000). Geometrical product specifications (GPS)—Acceptance and reverification tests for coordinate measuring machines (CMM)—Part 4: CMMs used in scanning measuring mode.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Cristofolini.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cristofolini, I., Molinari, A., Zago, M. et al. Design for Powder Metallurgy: Predicting Anisotropic Dimensional Change on Sintering of Real Parts. Int. J. Precis. Eng. Manuf. 20, 619–630 (2019). https://doi.org/10.1007/s12541-019-00030-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12541-019-00030-2

Keywords

Navigation