Advertisement

Backlash Compensation for Accurate Control of Biopsy Needle Manipulators having Long Cable Transmission

  • Gun Rae Cho
  • Seong-Tae Kim
  • Jung Kim
Regular Paper
  • 128 Downloads

Abstract

In the paper, a backlash compensator is proposed for accurate position control of the needle manipulator for the magnetic resonance imaging (MRI) guided biopsy. Having long cable driven transmission, the robot guarantees the MR-compatibility, but has accuracy degradation due to the backlash problem. To handle the problem, a backlash compensator is proposed based on the Prandtl-Ishlinskii model, regarding the continuity of the control input. The particle swarm optimization is used to identify the backlash model. Through the experiments, it is verified that the proposed compensator can reduce the tracking error dramatically, and can provide adequate accuracy for the biopsy operation.

Keywords

Biopsy needle manipulator Backlash compensation Prandtl-Ishlinskii model Particle swarm optimization MR-compatibility Cable transmission 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Elhawary, H., Tse, Z. T. H., Hamed, A., Rea, M., Davies, B. L., and Lamperth, M. U., “The Case for MR-Compatible Robotics: A Review of the State of the Art,” The International Journal of Medical Robotics and Computer Assisted Surgery, vol. 4, no. 2, pp. 105–113, 2008.CrossRefGoogle Scholar
  2. 2.
    Gassert, R., Burdet, E., and Chinzei, K., “Opportunities and Challenges in MR-Compatible Robotics,” IEEE Engineering in Medicine and Biology Magazine, vol. 27, no. 3, pp. 15–22, 2008.CrossRefGoogle Scholar
  3. 3.
    Gassert, R., Yamamoto, A., Chapuis, D., Dovat, L., Bleuler, H., and Burdet, E., “Actuation Methods for Applications in MR Environments,” Concepts in Magnetic Resonance Part B: Magnetic Resonance Engineering, vol. 29, no. 4, pp. 191–209, 2006.CrossRefGoogle Scholar
  4. 4.
    Gassert, R., Moser, R., Burdet, E., and Bleuler, H., “MRI/fMRICompatible Robotic System with Force Feedback for Interaction with Human Motion,” IEEE/ASME Transactions on Mechatronics, vol. 11, no. 2, pp. 216–224, 2006.CrossRefGoogle Scholar
  5. 5.
    Masamune, K., Kobayashi, E., Masutani, Y., Suzuki, M., Dohi, T., Iseki, H., and Takakura, K., “Development of an MRI-Compatible Needle Insertion Manipulator for Stereotactic Neurosurgery,” Journal of Image Guided Surgery, vol. 1, no. 4, pp. 242–248, 1995.CrossRefGoogle Scholar
  6. 6.
    Stoianovici, D., Patriciu, A., Petrisor, D., Mazilu, D., and Kavoussi, L., “A New Type of Motor: Pneumatic Step Motor,” IEEE/ASME Transactions on Mechatronics, vol. 12, no. 1, pp. 98–106, 2007.CrossRefGoogle Scholar
  7. 7.
    Stoianovici, D., Kim, C., Srimathveeravalli, G., Sebrecht, P., Petrisor, D., et al., “MRI-Safe Robot for Endorectal Prostate Biopsy,” IEEE/ASME Transactions on Mechatronics, vol. 19, no. 4, pp. 1289–1299, 2014.CrossRefGoogle Scholar
  8. 8.
    Kim, M.-S., Song, S.-H., Kim, H.-I., and Ahn, S.-H., “Hybrid 3D Printing and Casting Manufacturing Process for Fabrication of Smart Soft Composite Actuators,” Journal of the Korean Society for Precision Engineering, vol. 33, no. 1, pp. 77–83, 2016.CrossRefGoogle Scholar
  9. 9.
    Truong, B. N. M. and Ahn, K. K., “Modeling, Control and Experimental Investigation of Time-Average Flow Rate of a Deap Actuator Based Diaphragm Pump,” International Journal of Precision Engineering and Manufacturing, vol. 18, no. 8, pp. 1119–1129, 2017.CrossRefGoogle Scholar
  10. 10.
    Jayaramudu, T., Li, Y., Ko, H.-U., Shishir, I.R., and Kim, J., “Poly (Acrylic Acid)-Poly (Vinyl Alcohol) Hydrogels for Reconfigurable Lens Actuators,” International Journal of Precision Engineering and Manufacturing-Green Technology, vol. 3, no. 4, pp. 375–379, 2016.CrossRefGoogle Scholar
  11. 11.
    Kim, S.-T., Kim, Y., and Kim, J., “Design of an MR-Compatible Biopsy Needle Manipulator Using Pull-Pull Cable Transmission,” International Journal of Precision Engineering and Manufacturing, vol. 17, no. 9, pp. 1129–1137, 2016.CrossRefGoogle Scholar
  12. 12.
    Chapuis, D., Gassert, R., Ganesh, G., Burdet, E., and Bleuler, H., “Investigation of a Cable Transmission for the Actuation of MR Compatible Haptic Interfaces,” Proc. of the 1st IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics, pp. 426–431, 2006.Google Scholar
  13. 13.
    Menon, S., Brantner, G., Aholt, C., Kay, K., and Khatib, O., “Haptic FMRI: Combining Functional Neuroimaging with Haptics for Studying the Brain's Motor Control Representation,” Proc. of 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 4137–4142, 2013.Google Scholar
  14. 14.
    Vigaru, B., Sulzer, J., and Gassert, R., “Design and Evaluation of a Cable-Driven FMRI-Compatible Haptic Interface to Investigate Precision Grip Control,” IEEE Transactions on Haptics, vol. 9, no. 1, pp. 20–32, 2016.CrossRefGoogle Scholar
  15. 15.
    General Electric Company, “Optima MR450w, Optima 450w GEM, Preinstallation Manual,” http://docplayer.net/13181709-Optimamr450wpreinstallation-manual.html (Accessed 28 MAR 2018)Google Scholar
  16. 16.
    Silva M. “Microfocus X-ray Sources,” http://www.bibliocad.com/library/mri-room-2_56385 (Accessed 28 MAR 2018)Google Scholar
  17. 17.
    Nordin, M. and Gutman, P.-O., “Controlling Mechanical Systems with Backlash-A Survey,” Automatica, vol. 38, no. 10, pp. 1633–1649, 2002.MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Baek, J. H., “The Change of the Influence of Backlash Ratio according to the Change of Motor Input Voltage,” Journal of the Korean Society for Precision Engineering, vol. 34, no. 11, pp. 771–779, 2017.CrossRefGoogle Scholar
  19. 19.
    Pham, A. D. and Ahn, H.-J., “Hysteresis Curve Analysis of a Cycloid Reducer Using Non-Linear Spring with a Dead Zone,” International Journal of Precision Engineering and Manufacturing, vol. 18, no. 3, pp. 375–380, 2017.CrossRefGoogle Scholar
  20. 20.
    Tarng, Y., Kao, J., and Lin, Y., “Identification of and Compensation for Backlash on the Contouring Accuracy of CNC Machining Centres,” The International Journal of Advanced Manufacturing Technology, vol. 13, no. 2, pp. 77–85, 1997.CrossRefGoogle Scholar
  21. 21.
    Jang, J. O. and Jeon, G. J., “Backlash Compensation of Nonlinear Systems Using Fuzzy Logic,” International Journal of Systems Science, vol. 37, no. 7, pp. 485–492, 2006.CrossRefzbMATHGoogle Scholar
  22. 22.
    Suraneni, S., Kar, I. N., Murthy, O. R., and Bhatt, R., “Adaptive Stick-Slip Friction and Backlash Compensation Using Dynamic Fuzzy Logic System,” Applied Soft Computing, vol. 6, no. 1, pp. 26–37, 2005.CrossRefGoogle Scholar
  23. 23.
    Han, K.-H., Koh, G.-O., Sung, J.-M., and Kim, B.-S., “Adaptive Control Approach for Improving Control Systems with Unknown Backlash,” Proc. of 11th International Conference on Control, Automation and Systems (ICCAS), pp. 1919–1923, 2011.Google Scholar
  24. 24.
    Chen, C., Liu, Z., Zhang, Y., Chen, C. P., and Xie, S., “Actuator Backlash Compensation and Accurate Parameter Estimation for Active Vibration Isolation System,” IEEE Transactions on Industrial Electronics, vol. 63, no. 3, pp. 1643–1654, 2016.CrossRefGoogle Scholar
  25. 25.
    Lai, G., Liu, Z., Zhang, Y., Chen, C. L. P., and Xie, S., “Asymmetric Actuator Backlash Compensation in Quantized Adaptive Control of Uncertain Networked Nonlinear Systems,” IEEE Transactions on Neural Networks and Learning Systems, vol. 28, no. 2, pp. 294–307, 2017.CrossRefGoogle Scholar
  26. 26.
    Selmic, R. R. and Lewis, F. L., “Backlash Compensation in Nonlinear Systems Using Dynamic Inversion by Neural Networks,” Asian Journal of Control, vol. 2, no. 2, pp. 76–87, 2000.CrossRefGoogle Scholar
  27. 27.
    Selmic, R. R. and Lewis, F. L., “Neural Net Backlash Compensation with Hebbian Tuning Using Dynamic Inversion,” Automatica, vol. 37, no. 8, pp. 1269–1277, 2001.MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Awan, A. U., Park, J., Kim, H. J., Ryu, J., and Cho, M., “Adaptive Control of a Shape Memory Alloy Actuator Using Neural-Network Feedforward and Rise Feedback,” International Journal of Precision Engineering and Manufacturing, vol. 17, no. 4, pp. 409–418, 2016.CrossRefGoogle Scholar
  29. 29.
    Brokate, M. and Sprekels, J., “Hysteresis and Phase Transitions,” Springer-Verlag New York, 1996.Google Scholar
  30. 30.
    Al Janaideh, M., Rakheja, S., and Su, C.-Y., “An Analytical Generalized Prandtl-Ishlinskii Model Inversion for Hysteresis Compensation in Micropositioning Control,” IEEE/ASME Transactions on Mechatronics, vol. 16, no. 4, pp. 734–744, 2011.CrossRefGoogle Scholar
  31. 31.
    Gu, G.-Y., Yang, M.-J., and Zhu, L.-M., “Real-Time Inverse Hysteresis Compensation of Piezoelectric Actuators with a Modified Prandtl-Ishlinskii Model,” Review of Scientific Instruments, Vol. 83, No. 6, Paper No. 065106, 2012.Google Scholar
  32. 32.
    Sayyaadi, H. and Zakerzadeh, M. R., “Position Control of Shape Memory Alloy Actuator Based on the Generalized Prandtl-Ishlinskii Inverse Model,” Mechatronics, vol. 22, no. 7, pp. 945–957, 2012.CrossRefGoogle Scholar
  33. 33.
    Nealis, J. M. and Smith, R. C., “Model-based Robust Control Design for Magnetostrictive Transducers Operating in Hysteretic and Nonlinear Regimes,” IEEE Transactions on Control Systems Technology, vol. 15, no. 1, pp. 22–39, 2007.CrossRefGoogle Scholar
  34. 34.
    Eberhart, R. and Kennedy, J., “A New Optimizer Using Particle Swarm Theory,” Proc. of the 6th International Symposium on Micro Machine and Human Science, pp. 39–43, 1995.CrossRefGoogle Scholar
  35. 35.
    Rahman, M. A., Al Mamun, A., Yao, K., and Daud, Y., “Particle Swarm Optimization Based Modeling and Compensation of Hysteresis of PZT Micro-Actuator Used in High Precision Dual-Stage Servo System,” Proc. of IEEE International Conference on Mechatronics and Automation (ICMA), pp. 452–457, 2014.Google Scholar
  36. 36.
    Pan, M.-H., Tang, W.-C., Xing, Y., and Ni, J., “The Clamping Position Optimization and Deformation Analysis for an Antenna Thin Wall Parts Assembly with ASA, MIGA and PSO Algorithm,” International Journal of Precision Engineering and Manufacturing, vol. 18, no. 3, pp. 345–357, 2017.CrossRefGoogle Scholar
  37. 37.
    Jang, D.-Y., Jung, J., and Seok, J., “Modeling and Parameter Optimization for Cutting Energy Reduction in MQL Milling Process,” International Journal of Precision Engineering and Manufacturing-Green Technology, vol. 3, no. 1, pp. 5–12, 2016.CrossRefGoogle Scholar
  38. 38.
    Vis, J. K., “Particle Swarm Optimizer for Finding Robust Optima,” LIACS, Holland, 2009.Google Scholar
  39. 39.
    Hsia, T. C. and Gao, L. S., “Robot Manipulator Control Using Decentralized Linear Time-Invariant Time-Delayed Joint Controllers,” Proc. of IEEE International Conference on Robotics and Automation, pp. 2070–2075, 1990.CrossRefGoogle Scholar
  40. 40.
    Cho, G. R., Chang, P. H., Park, S. H., and Jin, M., “Robust Tracking under Nonlinear Friction Using Time-Delay Control with Internal Model,” IEEE Transactions on Control Systems Technology, vol. 17, no. 6, pp. 1406–1414, 2009.CrossRefGoogle Scholar

Copyright information

© Korean Society for Precision Engineering and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Marine Robotics R&D DivisionKorea Institute of Robot and ConvergenceGyeongsangbuk-doRepublic of Korea
  2. 2.i2A Systems, #4104 N28, KAISTDaejeonRepublic of Korea
  3. 3.Department of Mechanical EngineeringKAISTDaejeonRepublic of Korea

Personalised recommendations