Skip to main content
Log in

Compensation of the refractive index of air in laser interferometer for distance measurement: A review

  • Review Paper
  • Published:
International Journal of Precision Engineering and Manufacturing Aims and scope Submit manuscript

Abstract

We review the progress made for compensation of the refractive index of air in laser-based distance measurements in the field of precision engineering. First, a comprehensive analysis is introduced to clarify how the overall measurement uncertainty is affected by the refractive index of the ambient air, particularly for dimensional metrology and geodetic survey using laser in open-air environment. Second, it is explained that the measurement uncertainty can be improved to a 10-8 level by adopting empirical dispersion formulae describing the relation of the laser wavelength with the environment parameters such as temperature, pressure, humidity and carbon dioxide concentration. Third, the principle of refractometers is given to describe that the measurement uncertainty can be enhanced to a 10-9 level by identifying the refractive index of air real time in well-controlled environmental conditions. Fourth, the two-color compensation method is discussed which enables precise laser-based distance measurement simply by using two different wavelengths without actual identification of the refractive index of open air. Finally, the recent approach of using femtosecond lasers is described with emphasis on the performance of the two-color method can be enhanced to a 10-9 level by stabilizing the pulse repetition rate as well as frequency stability of ultrashort pulse lasers with reference to the atomic clocks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

L :

measured distance

e :

excess fraction

λ :

laser wavelength

n :

refractive index of air

T :

air temperature

P :

air pressure

P w :

water vapor pressure

P CO2 :

CO2 concentration

References

  1. Bobroff, N., “Recent Advances in Displacement Measuring Interferometry,” Measurement Science and Technology, Vol. 4, No. 9, pp. 907–926, 1993.

    Article  Google Scholar 

  2. Manske, E., Jäger, G., Hausotte, T., and Füßl, R., “Recent Developments and Challenges of Nanopositioning and Nanomeasuring Technology,” Measurement Science and Technology, Vol. 23, No. 7, Paper No. 074001, 2012.

    Google Scholar 

  3. Gao, W., Kim, S., Bosse, H., Haitjema, H., Chen, Y., et al., “Measurement Technologies for Precision Positioning,” CIRP Annals-Manufacturing Technology, Vol. 64, No. 2, pp. 773–796, 2015.

    Article  Google Scholar 

  4. Giacomo, P., “News from the BIPM,” Metrologia, Vol. 20, No. 1, pp. 25–30, 1984.

    Article  Google Scholar 

  5. Quinn, T., “Practical Realization of the Definition of the Metre, Including Recommended Radiations of Other Optical Frequency Standards (2001),” Metrologia, Vol. 40, No. 2, pp. 103–133, 2003.

    Article  MathSciNet  Google Scholar 

  6. Felder, R., “Practical Realization of the Definition of the Metre, Including Recommended Radiations of Other Optical Frequency Standards (2003),” Metrologia, Vol. 42, No. 4, pp. 323–325, 2005.

    Article  Google Scholar 

  7. Ishige, M., Matsuura, F., Kawasugi, M., and Aketagawa, M., “Phase Modulation Homodyne Interferometer with a 10-pm Resolution Using a Tunable Laser Diode,” Int. J. Precis. Eng. Manuf., Vol. 8, No. 2, pp. 80–84, 2007.

    Google Scholar 

  8. Gregorčič, P., Požar, T., and Možina, J., “Quadrature Phase-Shift Error Analysis Using a Homodyne Laser Interferometer,” Optics Express, Vol. 17, No. 18, pp. 16322–16331, 2009.

    Article  Google Scholar 

  9. Cui, J., He, Z., Jiu, Y., Tan, J., and Sun, T., “Homodyne Laser Interferometer Involving Minimal Quadrature Phase Error to Obtain Subnanometer Nonlinearity,” Applied Optics, Vol. 55, No. 25, pp. 7086–7092, 2016.

    Article  Google Scholar 

  10. Demarest, F. C., “High-Resolution, High-Speed, Low Data Age Uncertainty, Heterodyne Displacement Measuring Interferometer Electronics,” Measurement Science and Technology, Vol. 9, No. 7, pp. 1024–1030, 1998.

    Article  Google Scholar 

  11. Wu, C.-M., Lawall, J., and Deslattes, R. D., “Heterodyne Interferometer with Subatomic Periodic Nonlinearity,” Applied Optics, Vol. 38, No. 19, pp. 4089–4094, 1999.

    Article  Google Scholar 

  12. Eom, T.-B., Lee, J.-Y., Kim, J.-W., and Lyou, J., “Portable Calibration System for Displacement Measuring Sensors,” Int. J. Precis. Eng. Manuf., Vol. 7, No. 2, pp. 56–59, 2006.

    Google Scholar 

  13. Joo, K.-N., Ellis, J. D., Buice, E. S., Spronck, J. W., and Schmidt, R. H. M., “High Resolution Heterodyne Interferometer without Detectable Periodic Nonlinearity,” Optics Express, Vol. 18, No. 2, pp. 1159–1165, 2010.

    Article  Google Scholar 

  14. Diddams, S. A., Jones, D. J., Ye, J., Cundiff, S. T., Hall, J. L., et al., “Direct Link between Microwave and Optical Frequencies with a 300 THz Femtosecond Laser Comb,” Physical Review Letters, Vol. 84, No. 22, pp. 5102–5105, 2000.

    Article  Google Scholar 

  15. Diddams, S. A., Udem, T., Bergquist, J. C., Curtis, E. A., Drullinger, R. E., et al., “An Optical Clock Based on a Single Trapped 199Hg+ Ion,” Science, Vol. 293, No. 5531, pp. 825–828, 2001.

    Article  Google Scholar 

  16. Jones, R. J., and Diels, J.-C., “Stabilization of Femtosecond Lasers for Optical Frequency Metrology and Direct Optical to Radio Frequency Synthesis,” Physical Review Letters, Vol. 86, No. 15, pp. 3288–3291, 2001.

    Article  Google Scholar 

  17. Edlén, B., “The Dispersion of Standard Air,” Journal of the Optical Society of America, Vol. 43, No. 5, pp. 339–344, 1953.

    Article  Google Scholar 

  18. Edlén, B., “The Refractive Index of Air,” Metrologia, Vol. 2, No. 2, pp. 71–80, 1966.

    Article  Google Scholar 

  19. Ciddor, P. E., “Refractive Index of Air: New Equations for the Visible and Near Infrared,” Applied Optics, Vol. 35, No. 9, pp. 1566–1573, 1996.

    Article  Google Scholar 

  20. Terrien, J., “An Air Refractometer for Interference Length Metrology,” Metrologia, Vol. 1, No. 3, pp. 80–83, 1965.

    Article  Google Scholar 

  21. Bender, P. L. and Owens, J. C., “Correction of Optical Distance Measurements for the Fluctuating Atmospheric Index of Refraction,” Journal of Geophysical Research, Vol. 70, No. 10, pp. 2461–2462, 1965.

    Article  Google Scholar 

  22. Earnshaw, K. and Owens, J., “A Dual Wavelength Optical Distance Measuring Instrument which Measures Air Density,” IEEE Journal of Quantum Electronics, Vol. 3, No. 6, pp. 257–258, 1967.

    Article  Google Scholar 

  23. Owens, J., “The Use of Atmospheric Dispersion in Optical Distance Measurement,” Bulletin Géodésique (1946-1975), Vol. 89, No. 1, pp. 277–291, 1968.

    Article  Google Scholar 

  24. Birch, K. P. and Downs, M. J., “An Updated Edlén Equation for the Refractive Index of Air,” Metrologia, Vol. 30, No. 3, pp. 155–162, 1993.

    Article  Google Scholar 

  25. Birch, K. P. and Downs, M. J., “Correction to the Updated Edlén Equation for the Refractive Index of Air,” Metrologia, Vol. 31, No. 4, pp. 315–316, 1994.

    Article  Google Scholar 

  26. Bönsch, G. and Potulski, E., “Measurement of the Refractive Index of Air and Comparison with Modified Edlén's Formulae,” Metrologia, Vol. 35, No. 2, pp. 133–139, 1998.

    Article  Google Scholar 

  27. Ciddor, P. E. and Hill, R. J., “Refractive Index of Air. 2. Group Index,” Applied Optics, Vol. 38, No. 9, pp. 1663–1667, 1999.

    Article  Google Scholar 

  28. Ciddor, P. E., “Refractive Index of Air: 3. The Roles of CO2, H2O, and Refractivity Virials,” Applied Optics, Vol. 41, No. 12, pp. 2292–2298, 2002.

    Article  Google Scholar 

  29. Downs, M. and Birch, K., “Bi-Directional Fringe Counting Interference Refractometer,” Precision Engineering, Vol. 5, No. 3, pp. 105–110, 1983.

    Article  Google Scholar 

  30. Schellekens, P., Wilkening, G., Reinboth, F., Downs, M., Birch, K., and Spronck, J., “Measurements of the Refractive Index of Air Using Interference Refractometers,” Metrologia, Vol. 22, No. 4, pp. 279–287, 1986.

    Article  Google Scholar 

  31. Renkens, M. J. and Schellekens, P. H., “An Accurate Interference Refractometer Based on a Permanent Vacuum Chamber-Development and Results,” CIRP Annals-Manufacturing Technology, Vol. 42, No. 1, pp. 581–583, 1993.

    Article  Google Scholar 

  32. Hou, W. and Thalmann, R., “Accurate Measurement of the Refractive Index of Air,” Measurement, Vol. 13, No. 4, pp. 307–314, 1994.

    Article  Google Scholar 

  33. Khélifa, N., Fang, H., Xu, J., Juncar, P., and Himbert, M., “Refractometer for Tracking Changes in the Refractive Index of Air Near 780 nm,” Applied Optics, Vol. 37, No. 1, pp. 156–161, 1998.

    Article  Google Scholar 

  34. Fang, H. and Juncar, P., “A New Simple Compact Refractometer Applied to Measurements of Air Density Fluctuations,” Review of Scientific Instruments, Vol. 70, No. 7, pp. 3160–3166, 1999.

    Article  Google Scholar 

  35. Zhang, J., Lu, Z., and Wang, L., “Precision Measurement of the Refractive Index of Air with Frequency Combs,” Optics Letters, Vol. 30, No. 24, pp. 3314–3316, 2005.

    Article  Google Scholar 

  36. Andersson, M., Eliasson, L., and Pendrill, L., “Compressible Fabry-Perot Refractometer,” Applied Optics, Vol. 26, No. 22, pp. 4835–4840, 1987.

    Article  Google Scholar 

  37. Quoc, T. B., Ishige, M., Ohkubo, Y., and Aketagawa, M., “Measurement of Air-Refractive-Index Fluctuation From Laser Frequency Shift with Uncertainty of Order 10-9,” Measurement Science and Technology, Vol. 20, No. 12, Paper No. 125302, 2009.

    Google Scholar 

  38. Egan, P. and Stone, J. A., “Absolute Refractometry of Dry Gas to ±3 Parts in 109,” Applied Optics, Vol. 50, No. 19, pp. 3076–3086, 2011.

    Article  Google Scholar 

  39. Egan, P. F., Stone, J. A., Hendricks, J. H., Ricker, J. E., Scace, G. E., and Strouse, G. F., “Performance of a Dual Fabry-Perot Cavity Refractometer,” Optics Letters, Vol. 40, No. 17, pp. 3945–3948, 2015.

    Article  Google Scholar 

  40. Schödel, R., Walkov, A., and Abou-Zeid, A., “High-Accuracy Determination of Water Vapor Refractivity by Length Interferometry,” Optics Letters, Vol. 31, No. 13, pp. 1979–1981, 2006.

    Article  Google Scholar 

  41. Earnshaw, K. B. and Hernandez, E. N., “Two-Laser Optical Distance-Measuring Instrument that Corrects for the Atmospheric Index of Refraction,” Applied Optics, Vol. 11, No. 4, pp. 749–754, 1972.

    Article  Google Scholar 

  42. Hernandez, E. N. and Earnshaw, K. B., “Field Tests of a Two-Laser (4416 A and 6328 A) Optical Distance-Measuring Instrument Correcting for the Atmospheric Index of Refraction,” Journal of Geophysical Research, Vol. 77, No. 35, pp. 6994–6998, 1972.

    Article  Google Scholar 

  43. Bouricius, G. M. B. and Earnshaw, K. B., “Results of Field Testing a Two-Wavelength Optical Distance-Measuring Instrument,” Journal of Geophysical Research, Vol. 79, No. 20, pp. 3015–3018, 1974.

    Article  Google Scholar 

  44. Shao, M. and Staelin, D. H., “Long-Baseline Optical Interferometer for Astrometry,” Journal of the Optical Society of America, Vol. 67, No. 1, pp. 81–86, 1977.

    Article  Google Scholar 

  45. Querzola, B., “High Accuracy Distance Measurement by Two-Wavelength Pulsed Laser Sources,” Applied Optics, Vol. 18, No. 17, pp. 3035–3047, 1979.

    Article  Google Scholar 

  46. Huggett, G. R., “Two-Color Terrameter,” Tectonophysics, Vol. 71, Nos. 1-4, pp. 29–39, 1981.

    Article  Google Scholar 

  47. Matsumoto, H. and Tsukahara, K., “Effects of the Atmospheric Phase Fluctuation on Long-Distance Measurement,” Applied Optics, Vol. 23, No. 19, pp. 3388–3394, 1984.

    Article  Google Scholar 

  48. Im, K. E., Abshire, J. B., McGarry, J. F., and Gardner, C. S., “Experimental Evaluation of the Performance of Pulsed Two-Color Laser-Ranging Systems,” Journal of the Optical Society of AmericaA, Vol. 4, No. 5, pp. 820–833, 1987.

    Article  Google Scholar 

  49. Ishida, A., “Two-Wavelength Displacement-Measuring Interferometer Using Second-Harmonic Light to Eliminate Air-Turbulence-Induced Errors,” Japanese Journal of Applied Physics, Vol. 28, No. 3, pp. 473–475, 1989.

    Article  Google Scholar 

  50. Matsumoto, H. and Honda, T., “High-Accuracy Length-Measuring Interferometer Using the Two-Colour Method of Compensating for the Refractive Index of Air,” Measurement Science and Technology, Vol. 3, No. 11, pp. 1084, 1992.

    Article  Google Scholar 

  51. Zeng, L., Seta, K., Matsumoto, H., and Iwashaki, S., “Length Measurement by a Two-Colour Interferometer Using Two Close Wavelengths to Reduce Errors Caused by Air Turbulence,” Measurement Science and Technology, Vol. 10, No. 7, pp. 587–591, 1999.

    Article  Google Scholar 

  52. Zeng, L., Fujima, I., Hirai, A., Matsumoto, H., and Iwasaki, S., “A Two-Color Heterodyne Interferometer for Measuring the Refractive Index of Air Using an Optical Diffraction Grating,” Optics Communications, Vol. 203, No. 3, pp. 243–247, 2002.

    Article  Google Scholar 

  53. Meiners-Hagen, K., Meyer, T., Prellinger, G., Pöschel, W., Dontsov, D., and Pollinger, F., “Overcoming the Refractivity Limit in Manufacturing Environment,” Optics Express, Vol. 24, No. 21, pp. 24092–24104, 2016.

    Article  Google Scholar 

  54. Wu, H., Zhang, F., Liu, T., Li, J., and Qu, X., “Absolute Distance Measurement with Correction of Air Refractive Index by Using Two-Color Dispersive Interferometry,” Optics Express, Vol. 24, No. 21, pp. 24361–24376, 2016.

    Article  Google Scholar 

  55. Meiners-Hagen, K. and Abou-Zeid, A., “Refractive Index Determination in Length Measurement by Two-Colour Interferometry,” Measurement Science and Technology, Vol. 19, No. 8, Paper No. 084004, 2008.

    Google Scholar 

  56. Udem, T., Holzwarth, R., and Hänsch, T. W., “Optical Frequency Metrology,” Nature, Vol. 416, No. 6877, pp. 233–237, 2002.

    Article  Google Scholar 

  57. Kim, S.-W., “Metrology: Combs Rule,” Nature Photonics, Vol. 3, No. 6, pp. 313–314, 2009.

    Article  Google Scholar 

  58. Kim, J. and Song, Y., “Ultralow-Noise Mode-Locked Fiber Lasers and Frequency Combs: Principles, Status, and Applications,” Advances in Optics and Photonics, Vol. 8, No. 3, pp. 465–540, 2016.

    Article  Google Scholar 

  59. Coddington, I., Swann, W. C., Nenadovic, L., and Newbury, N. R., “Rapid and Precise Absolute Distance Measurements at Long Range,” Nature Photonics, Vol. 3, No. 6, pp. 351–356, 2009.

    Article  Google Scholar 

  60. Lee, J., Kim, Y.-J., Lee, K., Lee, S., and Kim, S.-W., “Time-of-Flight Measurement with Femtosecond Light Pulses,” Nature Photonics, Vol. 4, No. 10, pp. 716–720, 2010.

    Article  Google Scholar 

  61. Kajima, M. and Minoshima, K., “High-Precision Positioning Stage Using Optical Zooming Laser Interferometer for Linear Encoder Calibration,” Int. J. Precis. Eng. Manuf., Vol. 11, No. 5, pp. 681–687, 2010.

    Article  Google Scholar 

  62. Van den Berg, S. A., Persijn, S. T., Kok, G. J. P., Zeitouny, M. G., and Bhattacharya, N., “Many-Wavelength Interferometry with Thousands of Lasers for Absolute Distance Measurement,” Physical Review Letters, Vol. 108, No. 18, Paper No. 183901, 2012.

    Google Scholar 

  63. Joo, W.-D., Park, J., Kim, S., Kim, S., Kim, Y., et al., “Phase Shifting Interferometry for Large-Sized Surface Measurements by Sweeping the Repetition Rate of Femtosecond Light Pulses,” Int. J. Precis. Eng. Manuf., Vol. 14, No. 2, pp. 241–246, 2013.

    Article  Google Scholar 

  64. Chanthawong, N., Takahashi, S., Takamasu, K., and Matsumoto, H., “Performance Evaluation of a Coordinate Measuring Machine’s Axis Using a High-Frequency Repetition Mode of a Mode-Locked Fiber Laser,” Int. J. Precis. Eng. Manuf., Vol. 15, No. 8, pp. 1507–1512, 2014.

    Article  Google Scholar 

  65. Minoshima, K., Arai, K., and Inaba, H., “High-Accuracy Self-Correction of Refractive Index of Air Using Two-Color Interferometry of Optical Frequency Combs,” Optics Express, Vol. 19, No. 27, pp. 26095–26105, 2011.

    Article  Google Scholar 

  66. Wu, G., Arai, K., Takahashi, M., Inaba, H., and Minoshima, K., “High-Accuracy Correction of Air Refractive Index by Using Two-Color Heterodyne Interferometry of Optical Frequency Combs,” Measurement Science and Technology, Vol. 24, No. 1, Paper No. 015203, 2012.

    Google Scholar 

  67. Wu, G., Takahashi, M. Arai, K., Inaba, H., and Minoshima, K., “Extremely High-Accuracy Correction of Air Refractive Index Using Two-Colour Optical Frequency Combs,” Scientific Reports, Vol. 3, Paper No. 01894, 2013.

    Google Scholar 

  68. Wang, G., Jang, Y.-S., Hyun, S., Chun, B. J., Kang, H. J., et al., “Absolute Positioning by Multi-Wavelength Interferometry Referenced to the Frequency Comb of a Femtosecond Laser,” Optics Express, Vol. 23, No. 7, pp. 9121–9129, 2015.

    Article  Google Scholar 

  69. Jang, Y.-S., Wang, G., Hyun, S., Kang, H. J., Chun, B. J., et al., “Comb-Referenced Laser Distance Interferometer for Industrial Nanotechnology,” Scientific Reports, Vol. 6, Paper No. 31770, 2016.

    Google Scholar 

  70. Jin, J., Kim, Y.-J., Kim, Y., and Kim, S.-W., “Absolute Distance Measurements Using the Optical Comb of a Femtosecond Pulse Laser,” Int. J. Precis. Eng. Manuf, Vol. 8, No. 4, pp. 22–26, 2007.

    Google Scholar 

  71. Schuhler, N., Salvadé, Y., Lévêque, S., Dändliker, R., and Holzwarth, R., “Frequency-Comb-Referenced Two-Wavelength Source for Absolute Distance Measurement,” Optics Letters, Vol. 31, No. 21, pp. 3101–3103, 2006.

    Article  Google Scholar 

  72. Chun, B. J., Hyun, S., Kim, S., Kim, S.-W., and Kim, Y.-J., “Frequency-Comb-Referenced Multi-Channel Fiber Laser for DWDM Communication,” Optics Express, Vol. 21, No. 24, pp. 29179–29185, 2013.

    Article  Google Scholar 

  73. Kang, H. J., Chun, B. J., Jang, Y.-S., Kim, Y.-J., and Kim, S.-W., “Real-Time Compensation of the Refractive Index of Air in Distance Measurement,” Optics Express, Vol. 23, No. 20, pp. 26377–26385, 2015.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of the Republic of Korea (NRF-2012R1A3A1050386).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seung-Woo Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jang, YS., Kim, SW. Compensation of the refractive index of air in laser interferometer for distance measurement: A review. Int. J. Precis. Eng. Manuf. 18, 1881–1890 (2017). https://doi.org/10.1007/s12541-017-0217-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12541-017-0217-y

Keywords

Navigation