Skip to main content
Log in

Disaster response and recovery from the perspective of robotics

  • Review Paper
  • Published:
International Journal of Precision Engineering and Manufacturing Aims and scope Submit manuscript

Abstract

As we witnessed in recent major disasters, the functionalities of robots in disaster environments do not appear to meet the high level of expectation from the public. This paper reviews robotic operations in disaster situations and open issues with the current robotic technologies. We particularly address fundamental problems with teleoperated ground robots for disaster response and recovery: design of robot platforms and balance between human supervisory control and robotic anatomy. In attempt to alleviate the problems, this paper suggests enabling technologies to improve the effectiveness of robotic systems for disaster response and recovery missions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Murphy, R. R., Tadokoro, S., and Kleiner, A., “Disaster Robotics,” in: Springer Handbook of Robotics, Siciliano, B., Khatib, O., (Eds.), Springer, pp. 1577–1604, 2016.

    Chapter  Google Scholar 

  2. McEntire, D. A., “Disaster Response and Recovery: Strategies and Tactics for Resilience,” John Wiley & Sons, 2014.

    Google Scholar 

  3. Murphy, R. R., “Disaster Robotics,” MIT Press, 2014.

    Google Scholar 

  4. Osumi, H., “Application of Robot Technologies to the Disaster Sites,” Report of JSME Research Committee on the Great East Japan Earthquake Disaster, pp. 58–74, 2014.

    Google Scholar 

  5. Yanco, H. A., Norton, A., Ober, W., Shane, D., Skinner, A., and Vice, J., “Analysis of Human-Robot Interaction at the DARPA Robotics Challenge Trials,” Journal of Field Robotics, Vol. 32, No. 3, pp. 420–444, 2015.

    Article  Google Scholar 

  6. Kim, S., Kim, M., Lee, J., Hwang, S., Chae, J., et al., “Team SNU's Control Strategies for Enhancing a Robot's Capability: Lessons from the 2015 DARPA Robotics Challenge Finals,” Journal of Field Robotics, Vol. 34, No. 2, pp. 359–380, 2017.

    Article  Google Scholar 

  7. Atkeson, C. G., Babu, B., Banerjee, N., Berenson, D., Bove, C., et al., “What Happened at the DARPA Robotics Challenge, and Why,” Proc. of 15th IEEE-RAS International Conference on Humanoid Robots, 2015.

    Google Scholar 

  8. Inoue, T., “Disaster and Robots-How Robots should be seen from the Great Earthquake,” Disaster and Robot, 2012. (in Japanese)

    Google Scholar 

  9. General Dynamics Land Systems, “Tracked Combat Vehicles,” http://www.gdls.com/products/tracked-combat/MUTT.html (Accessed 13 SEP 2017)

    Google Scholar 

  10. Lockheed Martin, “SMSS,” http://www.lockheedmartin.com/us/products/smss.html (Accessed 13 SEP 2017)

    Google Scholar 

  11. Future Robotics Technology Center, “Quince,” http://furo.org/en/works/quince.html (Accessed 13 SEP 2017)

    Google Scholar 

  12. Endeavor Robotics, “Packbot,” http://endeavorrobotics.com/products#510-packbot (Accessed 13 SEP 2017)

    Google Scholar 

  13. Boston Dynamics, “BigDog,” https://www.bostondynamics.com/bigdog (Accessed 13 SEP 2017)

    Google Scholar 

  14. Biomimetic Robotics Lab, “Dynamic Locomotion for the MIT Cheetah 2,” http://biomimetics.mit.edu/research/dynamic-locomotionmit-cheetah-2 (Accessed 13 SEP 2017)

    Google Scholar 

  15. Boston Dynamics, “RHex: Devours Rough Terrain,” https://www.bostondynamics.com/rhex (Accessed 13 SEP 2017)

    Google Scholar 

  16. Twiki, “StickyBot,” http://bdml.stanford.edu/twiki/bin/view/Rise/StickyBot (Accessed 13 SEP 2017)

    Google Scholar 

  17. HiBot, “Soryu-4,” http://www.hibot.co.jp/ecommerce/prod-detail/12 (Accessed 25 SEP 2017)

    Google Scholar 

  18. HiBot, “ACM-R5H,” http://www.hibot.co.jp/ecommerce/prod-detail/14 (Accessed 25 SEP 2017)

    Google Scholar 

  19. McGhee, R.B., “Vehicular Legged Locomotion,” in: Advances in Automation and Robotics, Saridis, G. N. (Ed.), JAI Press, Vol. 1, pp. 259–284, 1985.

    Google Scholar 

  20. Raibert, M., Blankespoor, K., Nelson, G., and Playter, R., “Bigdog, the Rough-Terrain Quadruped Robot,” IFAC Proceedings Volumes, Vol. 41, No. 2, pp. 10822–10825, 2008.

    Article  Google Scholar 

  21. Hyun, D. J., Seok, S., Lee, J., and Kim, S., “High Speed Trot-Running: Implementation of a Hierarchical Controller Using Proprioceptive Impedance Control on the MIT Cheetah,” The International Journal of Robotics Research, Vol. 33, No. 11, pp. 1417–1445, 2014.

    Article  Google Scholar 

  22. Seok, S., Wang, A., Otten, D., and Kim, S., “Actuator Design for High Force Proprioceptive Control in Fast Legged Locomotion,” Proc. of IEEE/RSJ International Conference on Intelligent Robots And Systems (IROS), pp. 1970–1975, 2012.

    Google Scholar 

  23. Heo, G. S., Lee, S.-R., Kwak, M. K., Park, C. W., Kim, G., and Lee, C.-Y., “Motion Control of Bicycle-Riding Exoskeleton Robot with Interactive Force Analysis,” Int. J. Precis. Eng. Manuf., Vol. 16, No. 7, pp. 1631–1637, 2015.

    Article  Google Scholar 

  24. Bicchi, A., Rizzini, S. L., and Tonietti, G., “Compliant Design for Intrinsic Safety: General Issues and Preliminary Design,” Proc. of IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1864–1869, 2001.

    Google Scholar 

  25. Tonietti, G., Schiavi, R., and Bicchi, A., “Design and Control of a Variable Stiffness Actuator for Safe and Fast Physical Human/Robot Interaction,” Proc. of IEEE International Conference on Robotics and Automation, pp. 526–531, 2005.

    Google Scholar 

  26. Kim, B.-S., Park, S., Song, J.-B., and Kim, B., “Equilibrium Point Control of a Robot Manipulator Using Biologically-Inspired Redundant Actuation System,” Advanced Robotics, Vol. 27, No. 8, pp. 567–579, 2013.

    Article  Google Scholar 

  27. Zinn, M., Roth, B., Khatib, O., and Salisbury, J. K., “A New Actuation Approach for Human Friendly Robot Design,” The International Journal of Robotics Research, Vol. 23, Nos. 4-5, pp. 379–398, 2004.

    Article  Google Scholar 

  28. Wang, A., Ramos, J., Mayo, J., Ubellacker, W., Cheung, J., and Kim, S., “The Hermes Humanoid System: A Platform for Full-Body Teleoperation with Balance Feedback,” Proc. of IEEE-RAS 15th International Conference on Humanoid Robots (Humanoids), pp. 730–737, 2015.

    Chapter  Google Scholar 

  29. Kumar, V., Rus, D., and Singh, S., “Robot and Sensor Networks for First Responders,” IEEE Pervasive Computing, Vol. 3, No. 4, pp. 24–33, 2004.

    Article  Google Scholar 

  30. Menzi Muck, “Menzi Muck Walking Excavators,” https://www.menzimuck.com/en/product-groups/menzi-muck-walkingexcavators/(Accessed 13 SEP 2017)

    Google Scholar 

  31. Hitachi Construction Machinery Co., Ltd., “Double-Front Work Machine,” https://www.hitachicm.com/global/ourbusiness/products/double-front-work-machine/(Accessed 13 SEP 2017)

    Google Scholar 

  32. Sheridan, T. B., “Human-Robot Interaction: Status and Challenges,” Human Factors, Vol. 58, No. 4, pp. 525–532, 2016.

    Article  Google Scholar 

  33. Fong, T., Thorpe, C., and Baur, C., “Robot as Partner: Vehicle Teleoperation with Collaborative Control,” in: Multi-Robot systems: From Swarms to Intelligent Automata, Schultz A. C., Parker L. E., (Eds.), Springer, pp. 195–202, 2002.

    Chapter  Google Scholar 

  34. Nielsen, C. W., Goodrich, M. A., and Ricks, R. W., “Ecological Interfaces for Improving Mobile Robot Teleoperation,” IEEE Transactions on Robotics, Vol. 23, No. 5, pp. 927–941, 2007.

    Article  Google Scholar 

  35. Argentieri, S., Danes, P., and Souères, P., “A Survey on Sound Source Localization in Robotics: From Binaural to Array Processing Methods,” Computer Speech & Language, Vol. 34, No. 1, pp. 87–112, 2015.

    Article  Google Scholar 

  36. Ntalampiras, S., Potamitis, I., and Fakotakis, N., “An Adaptive Framework for Acoustic Monitoring of Potential Hazards,” EURASIP Journal on Audio, Speech, and Music Processing, Vol. 2009, No. 1, Paper No. 594103, 2009.

    Google Scholar 

  37. Valenzise, G., Gerosa, L., Tagliasacchi, M., Antonacci, F., and Sarti, A., “Scream and Gunshot Detection and Localization for Audio-Surveillance Systems,” Proc. of IEEE Conference on Advanced Video and Signal Based Surveillance, pp. 21–26, 2007.

    Google Scholar 

  38. Ramos, J., Wang, A., Ubellacker, W., Mayo, J., and Kim, S., “A Balance Feedback Interface for Whole-Body Teleoperation of a Humanoid Robot and Implementation in the Hermes System,” Proc. of IEEE-RAS 15th International Conference on Humanoid Robots (Humanoids), pp. 844–850, 2015.

    Chapter  Google Scholar 

  39. Ramos, J., Wang, A., and Kim, S., “Robot-Human Balance State Transfer during Full-Body Humanoid Teleoperation Using Divergent Component of Motion Dynamics,” Proc. of IEEE International Conference on Robotics and Automation (ICRA), pp. 1587–1592, 2016.

    Google Scholar 

  40. Aoyama, K., Iizuka, H., Ando, H., and Maeda, T., “Four-Pole Galvanic Vestibular Stimulation Causes Body Sway about Three Axes,” Scientific Reports, Vol. 5, Paper No. 10168, 2015.

    Google Scholar 

  41. Fitzpatrick, R. C. and Day, B. L., “Probing the Human Vestibular System with Galvanic Stimulation,” Journal of Applied Physiology, Vol. 96, No. 6, pp. 2301–2316, 2004.

    Article  Google Scholar 

  42. Diffler, M., Huber, F., Culbert, C., Ambrose, R., and Bluethmann, W., “Human-Robot Control Strategies for the NASA/DARPA Robonaut,” Proc. of Aerospace Conference, Vol. 8, pp. 8_3939-8_3947, 2003.

    Google Scholar 

  43. Fong, T., Rochlis Zumbado, J., Currie, N., Mishkin, A., and Akin, D. L., “Space Telerobotics: Unique Challenges to Human-Robot Collaboration in Space,” Reviews of Human Factors and Ergonomics, Vol. 9, No. 1, pp. 6–56, 2013.

    Article  Google Scholar 

  44. Murphy, R. R. and Stover, S., “Field Studies of Safety Security Rescue Technologies through Training and Response Activities,” Proc. of SPIE, Vol. 6230, Paper No. 62300M, 2006.

    Google Scholar 

  45. Oh, K. W., Kim, D., Hong, D., Park, J.-H., and Hong, S., “Design of a Haptic Device for Excavator Equipped with Crusher,” Proc. of ISARC, pp. 202–208, 2008.

    Google Scholar 

  46. Kim, D., Oh, K. W., Hong, D., Kim, Y. K., and Hong, S.-H., “Motion Control of Excavator with Tele-Operated System,” Proc. of 26th International Symposium on Automation and Robotics in Construction (ISARC), pp. 341–347, 2009.

    Google Scholar 

  47. Sheridan, T. B., “Telerobotics, Automation, and Human Supervisory Control,” MIT Press, 1992.

    Google Scholar 

  48. Nourbakhsh, I. R., Sycara, K., Koes, M., Yong, M., Lewis, M., and Burion, S., “Human-Robot Teaming for Search and Rescue,” IEEE Pervasive Computing, Vol. 4, No. 1, pp. 72–79, 2005.

    Article  Google Scholar 

  49. Shah, J., Wiken, J., Williams, B., and Breazeal, C., “Improved Human-Robot Team Performance Using Chaski, a Human-Inspired Plan Execution System,” Proc. of the 6th International Conference on Human-Robot Interaction, pp. 29–36, 2011.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daehie Hong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, S., Oh, Y. & Hong, D. Disaster response and recovery from the perspective of robotics. Int. J. Precis. Eng. Manuf. 18, 1475–1482 (2017). https://doi.org/10.1007/s12541-017-0175-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12541-017-0175-4

Keywords

Navigation