Fabrication of bioinspired dry adhesives by CNC machining and replica molding

Regular Paper
  • 117 Downloads

Abstract

Bioinspired dry adhesives have attracted considerable attention over the last decade because of their superiority in properties, such as adhesion strength, repeatable and reversible adhesion, rough surface adaptation, self-cleaning, and directional adhesion. However, previous manufacturing techniques of bioinspired dry adhesives based on lithographic approaches, such as photolithography or ebeam lithography, require high-cost, sophisticated, and non-environmental friendly processes and materials. These requirements significantly limit the scalable production and commercialization of bioinspired dry adhesives. In this paper, we present a new manufacturing technique based on automated CNC machining and replica molding. This method enables simple and scalable fabrication of bioinspired dry adhesives. Our suggested manufacturing process will facilitate the widespread use and commercialization of biomimetic smart dry adhesives.

Keywords

Biomimetics Gecko Dry adhesive CNC Replica molding 

Nomenclature

AR

aspect ratio

CNTs

carbon nanotubes

CNC

computer numerical control

PDMS

polydimethylsiloxane

Si

silicon

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Autumn, K., Liang, Y. A., Hsieh, S. T., Zesch, W., Chan, W. P., et al., “Adhesive force of a Single Gecko Foot-Hair,” Nature, Vol. 405, No. 6787, pp. 681–685, 2000.CrossRefGoogle Scholar
  2. 2.
    Federle, W., “Why Are So Many Adhesive Pads Hairy?” Journal of Experimental Biology, Vol. 209, No. 14, pp. 2611–2621, 2006.Google Scholar
  3. 3.
    Autumn, K., Sitti, M., Liang, Y. A., Peattie, A. M., Hansen, W. R., et al., “Evidence for Van Der Waals Adhesion in Gecko Setae,” Proceedings of the National Academy of Sciences, Vol. 99, No. 19, pp. 12252–12256, 2002.CrossRefGoogle Scholar
  4. 4.
    Guo, D.-J., Liu, R., Cheng, Y., Zhang, H., Zhou, L.-M., et al., “Reverse Adhesion of a Gecko-Inspired Synthetic Adhesive Switched by an Ion-Exchange Polymer-Metal Composite Actuator,” ACS Applied Materials & Interfaces, Vol. 7, No. 9, pp. 5480–5487, 2015.CrossRefGoogle Scholar
  5. 5.
    Krahn, J., Bovero, E., and Menon, C., “Magnetic Field Switchable Dry Adhesives,” ACS Applied Materials & Interfaces, Vol. 7, No. 4, pp. 2214–2222, 2015.CrossRefGoogle Scholar
  6. 6.
    Yi, H., Kang, M., Kwak, M. K., and Jeong, H. E., “Simple and Reliable Fabrication of Bioinspired Mushroom-Shaped Micropillars with Precisely Controlled Tip Geometries,” ACS Applied Materials & Interfaces, Vol. 8, No. 34, pp. 22671–22678, 2016.CrossRefGoogle Scholar
  7. 7.
    Im, H. S., Kwon, K. Y., Kim, J. U., Kim, K. S., Yi, H., et al., “Highly Durable and Unidirectionally Stooped Polymeric Nanohairs for Gecko-Like Dry Adhesive,” Nanotechnology, Vol. 26, No. 41, Paper No. 415301, 2015.CrossRefGoogle Scholar
  8. 8.
    Arzt, E., Gorb, S., and Spolenak, R., “From Micro to Nano Contacts in Biological Attachment Devices,” Proceedings of the National Academy of Sciences, Vol. 100, No. 19, pp. 10603–10606, 2003.CrossRefGoogle Scholar
  9. 9.
    Gorb, S., Varenberg, M., Peressadko, A., and Tuma, J., “Biomimetic Mushroom-Shaped Fibrillar Adhesive Microstructure,” Journal of the Royal Society Interface, Vol. 4, No. 13, pp. 271–275, 2007.CrossRefGoogle Scholar
  10. 10.
    Gorb, S. N. and Varenberg, M., “Mushroom-Shaped Geometry of Contact Elements in Biological Adhesive Systems,” Journal of Adhesion Science and Technology, Vol. 21, Nos. 12-13, pp. 1175–1183, 2007.CrossRefGoogle Scholar
  11. 11.
    Chen, B., Zhong, G., Goldberg Oppenheimer, P., Zhang, C., Tornatzky, H., et al., “Influence of Packing Density and Surface Roughness of Vertically-Aligned Carbon Nanotubes on Adhesive Properties of Gecko-Inspired Mimetics,” ACS Applied Materials & Interfaces, Vol. 7, No. 6, pp. 3626–3632, 2015.Google Scholar
  12. 12.
    del Campo, A., Greiner, C., Álvarez, I., and Arzt, E., “Patterned Surfaces with Pillars with Controlled 3D Tip Geometry Mimicking Bioattachment Devices,” Advanced Materials, Vol. 19, No. 15, pp. 1973–1977, 2007.CrossRefGoogle Scholar
  13. 13.
    Kim, J. H., Kang, S. M., Lee, B. J., Ko, H., Bae, W.-G., et al., “Remote Manipulation of Droplets on a Flexible Magnetically Responsive Film,” Scientific Reports, Vol. 5, 2015. (DOI: 10.1038/srep17843)Google Scholar
  14. 14.
    Ko, H., Yi, H., and Jeong, H. E., “Wall and Ceiling Climbing Quadruped Robot with Superior Water Repellency Manufactured Using 3D Printing (UNIclimb),” Int. J. Precis. Eng. Manuf.-Green Tech., Vol. 4, No. 3, pp. 273–280, 2017.CrossRefGoogle Scholar
  15. 15.
    Kwak, R., Park, H.-H., Ko, H., Seong, M., Kwak, M. K., and Jeong, H. E., “Partially Cured Photopolymer with Gradient Bingham Plastic Behaviors as a Versatile Deformable Material,” ACS Macro Letters, Vol. 6, No. 5, pp. 561–565, 2017.CrossRefGoogle Scholar
  16. 16.
    Ngo, C.-V., Davaasuren, G., Oh, H.-S., and Chun, D.-M., “Transparency and Superhydrophobicity of Cone-Shaped Micropillar Array Textured Polydimethylsiloxane,” Int. J. Precis. Eng. Manuf., Vol. 16, No. 7, pp. 1347–1353, 2015.CrossRefGoogle Scholar
  17. 17.
    Seong, M., Jeong, C., Yi, H., Park, H.-H., Bae, W.-G., et al., “Adhesion of Bioinspired Nanocomposite Microstructure at High Temperatures,” Applied Surface Science, Vol. 413, pp. 275–283, 2017.CrossRefGoogle Scholar
  18. 18.
    Jeong, H. E., Lee, J.-K., Kim, H. N., Moon, S. H., and Suh, K. Y., “A Nontransferring Dry Adhesive with Hierarchical Polymer Nanohairs,” Proceedings of the National Academy of Sciences, Vol. 106, No. 14, pp. 5639–5644, 2009.CrossRefGoogle Scholar
  19. 19.
    Jeong, H. E., Lee, J.-K., Kwak, M. K., Moon, S. H., and Suh, K. Y., “Effect of Leaning Angle of Gecko-Inspired Slanted Polymer Nanohairs on Dry Adhesion,” Applied Physics Letters, Vol. 96, No. 4, Paper No. 043704, 2010.CrossRefGoogle Scholar
  20. 20.
    Yi, H., Hwang, I., Lee, J. H., Lee, D., Lim, H., et al., “Continuous and Scalable Fabrication of Bioinspired Dry Adhesives via a Rollto-Roll Process with Modulated Ultraviolet-Curable Resin,” ACS Applied Materials & Interfaces, Vol. 6, No. 16, pp. 14590–14599, 2014.CrossRefGoogle Scholar
  21. 21.
    Jeong, H. E., Lee, S. H., Kim, P., and Suh, K. Y., “Stretched Polymer Nanohairs by Nanodrawing,” Nano Letters, Vol. 6, No. 7, pp. 1508–1513, 2006.CrossRefGoogle Scholar
  22. 22.
    Jeong, H. E. and Suh, K. Y., “Nanohairs and Nanotubes: Efficient Structural Elements for Gecko-Inspired Artificial Dry Adhesives,” Nano Today, Vol. 4, No. 4, pp. 335–346, 2009.CrossRefGoogle Scholar
  23. 23.
    Kim, T. I., Jeong, H. E., Suh, K. Y., and Lee, H. H., “Stooped Nanohairs: Geometry-Controllable, Unidirectional, Reversible, and Robust Gecko-Like Dry Adhesive,” Advanced Materials, Vol. 21, No. 22, pp. 2276–2281, 2009.CrossRefGoogle Scholar
  24. 24.
    Sethi, S., Ge, L., Ci, L., Ajayan, P. M., and Dhinojwala, A., “Gecko-Inspired Carbon Nanotube-Based Self-Cleaning Adhesives,” Nano Letters, Vol. 8, No. 3, pp. 822–825, 2008.CrossRefGoogle Scholar
  25. 25.
    Yi, H., Hwang, I., Sung, M., Lee, D., Kim, J.-H., et al., “Bio-Inspired Adhesive Systems for Next-Generation Green Manufacturing,” Int. J. Precis. Eng. Manuf.-Green Tech., Vol. 1, No. 4, pp. 347–351, 2014.CrossRefGoogle Scholar
  26. 26.
    Chu, W.-S., Kim, C.-S., Lee, H.-T., Choi, J.-O., Park, J.-I., et al., “Hybrid Manufacturing in Micro/Nano Scale: A Review,” Int. J. Precis. Eng. Manuf.-Green Tech., Vol. 1, No. 1, pp. 75–92, 2014.CrossRefGoogle Scholar
  27. 27.
    Jahan, M., Wong, Y., and Rahman, M., “A Study on the Quality Micro-Hole Machining of Tungsten Carbide by Micro-EDM Process Using Transistor and RC-Type Pulse Generator,” Journal of Materials Processing Technology, Vol. 209, No. 4, pp. 1706–1716, 2009.CrossRefGoogle Scholar
  28. 28.
    Nouraei, H., Kowsari, K., Spelt, J., and Papini, M., “Surface Evolution Models for Abrasive Slurry Jet Micro-Machining of Channels and Holes in Glass,” Wear, Vol. 309, No. 1, pp. 65–73, 2014.CrossRefGoogle Scholar
  29. 29.
    Sen, M. and Shan, H. S., “A Review of Electrochemical Macro-to Micro-Hole Drilling Processes,” International Journal of Machine Tools and Manufacture, Vol. 45, No. 2, pp. 137–152, 2005.MathSciNetCrossRefGoogle Scholar
  30. 30.
    Yan, Y., Hu, Z., Zhao, X., Sun, T., Dong, S., and Li, X., “Top-Down Nanomechanical Machining of Three-Dimensional Nanostructures by Atomic Force Microscopy,” Small, Vol. 6, No. 6, pp. 724–728, 2010.CrossRefGoogle Scholar
  31. 31.
    Zhang, Q., Zhang, F., Medarametla, S. P., Li, H., Zhou, C., and Lin, D., “3D Printing of Graphene Aerogels,” Small, Vol. 12, No. 13, pp. 1702–1708, 2016.CrossRefGoogle Scholar
  32. 32.
    Cho, M. H. and Park, S., “Micro CNC Surface Texturing on Polyoxymethylene (POM) and Its Tribological Performance in Lubricated Sliding,” Tribology International, Vol. 44, No. 7, pp. 859–867, 2011.CrossRefGoogle Scholar
  33. 33.
    Yan, Y., Sun, T., Liang, Y., and Dong, S., “Investigation on AFMBased Micro/Nano-CNC Machining System,” International Journal of Machine Tools and Manufacture, Vol. 47, No. 11, pp. 1651–1659, 2007.CrossRefGoogle Scholar
  34. 34.
    Do, V.-C., Nguyen, D.-T., Cho, J.-H., and Kim, Y.-S., “Incremental Forming of 3D Structured Aluminum Sheet,” Int. J. Precis. Eng. Manuf., Vol. 17, No. 2, pp. 217–223, 2016.CrossRefGoogle Scholar
  35. 35.
    Fan, W., Lee, C.-H., and Chen, J.-H., “Real-Time Repairable Interpolation Scheme for CNC Tool Path Processing,” Int. J. Precis. Eng. Manuf., Vol. 17, No. 12, pp. 1673–1684, 2016.CrossRefGoogle Scholar
  36. 36.
    Kim, T., “Simulated Annealing Approach with an Exhaustive Greedy Search for the Optimal Machining Region Decomposition in CNC Roughing Tool Path Generation,” Int. J. Precis. Eng. Manuf., Vol. 16, No. 2, pp. 399–402, 2015.CrossRefGoogle Scholar
  37. 37.
    Torres, F. and Griffin, J., “Control with Micro Precision in Abrasive Machining through the Use of Acoustic Emission Signals,” Int. J. Precis. Eng. Manuf., Vol. 16, No. 3, pp. 441–449, 2015.CrossRefGoogle Scholar
  38. 38.
    Bae, W.-G., Kim, D., and Suh, K.-Y., “Instantly Switchable Adhesion of Bridged Fibrillar Adhesive via Gecko-Inspired Detachment Mechanism and Its Application to a Transportation System,” Nanoscale, Vol. 5, No. 23, pp. 11876–11884, 2013.CrossRefGoogle Scholar
  39. 39.
    Boesel, L. F., Greiner, C., Arzt, E., and Del Campo, A., “Gecko-Inspired Surfaces: A Path to Strong and Reversible Dry Adhesives,” Advanced Materials, Vol. 22, No. 19, pp. 2125–2137, 2010.CrossRefGoogle Scholar
  40. 40.
    Lee, J., Fearing, R. S., and Komvopoulos, K., “Directional Adhesion of Gecko-Inspired Angled Microfiber Arrays,” Applied Physics Letters, Vol. 93, No. 19, Paper No. 191910, 2008.CrossRefGoogle Scholar
  41. 41.
    Koschwanez, J. H., Carlson, R. H., and Meldrum, D. R., “Thin PDMS Films Using Long Spin Times or Tert-Butyl Alcohol as a Solvent,” PLoS One, Vol. 4, No. 2, Paper No. e4572, 2009.CrossRefGoogle Scholar

Copyright information

© Korean Society for Precision Engineering and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringUlsan National Institute of Science and TechnologyUlsanSouth Korea
  2. 2.Department of Fire Protection EngineeringPukyong National UniversityBusanSouth Korea

Personalised recommendations