Skip to main content
Log in

A novel adaptive finite-time tracking control for robotic manipulators using nonsingular terminal sliding mode and RBF neural networks

  • Published:
International Journal of Precision Engineering and Manufacturing Aims and scope Submit manuscript

Abstract

This paper presents a novel adaptive terminal sliding mode controller for the trajectory tracking of robotic manipulators using radial basis function neural networks (RBFNNs). First, a modified terminal sliding mode (TSM) surface is approached to avoid the singularity problem of conventional TSM. Then, a nonsingular TSM control is designed for joint position tracking of a robotic manipulator. In the control scheme, fully tuned RBFNNs are adopted to approximate the nonlinear unknown dynamics of the robotic manipulator. Adaptive learning algorithms are derived to allow online adjustment of the output weights, the centers and the variances in the RBFNNs. Meanwhile, a continuous robust control term is added to eliminate chattering efforts in the sliding mode control (SMC) system. The stability and finite-time convergence of the closed-loop system are established by using Lyapunov theory. Finally, the simulation results of a two-link robotic manipulator are presented to demonstrate the effectiveness of the proposed control method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

SMC:

sliding mode control

TSMC:

terminal sliding mode control

NTSM:

nonsingular terminal sliding mode

NN:

neural network

RBFNN:

radial basis function neural network

RBFNNs:

radial basis function neural networks

NAFTTC:

novel adaptive finite-time tracking control

NNTSMC:

novel nonsingular terminal sliding mode controller

References

  1. Spong, M. W., “On the Robust Control of Robot Manipulators,” IEEE Transactions on Automatic Control, Vol. 37, No. 11, pp. 1782–1786, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  2. Abdallah, C. T., Dawson, D., Dorato, P., and Jamshidi, M., “Survey of Robust Control for Rigid Robots,” IEEE Control Systems, Vol. 11, No. 2, pp. 24–30, 1991.

    Article  MATH  Google Scholar 

  3. Slotine, J.-J. E. and Li, W., “On the Adaptive Control of Robot Manipulators,” The International Journal of Robotics Research, Vol. 6, No. 3, pp. 49–59, 1987.

    Article  Google Scholar 

  4. Ortega, R. and Spong, M. W., “Adaptive Motion Control of Rigid Robots: A Tutorial,” Automatica, Vol. 25, No. 6, pp. 877–888, 1989.

    Article  MathSciNet  MATH  Google Scholar 

  5. Hung, J. Y., Gao, W., and Hung, J. C., “Variable Structure Control: A Survey,” IEEE Transactions on Industrial Electronics, Vol. 40, No. 1, pp. 2–22, 1993.

    Article  Google Scholar 

  6. Sabanovic, A., “Variable Structure Systems with Sliding Modes in Motion Control-A Survey,” IEEE Transactions on Industrial Informatics, Vol. 7, No. 2, pp. 212–223, 2011.

    Article  Google Scholar 

  7. Zhihong, M., Paplinski, A. P., and Wu, H. R., “A Robust Mimo Terminal Sliding Mode Control Scheme for Rigid Robotic Manipulators,” IEEE Transactions on Automatic Control, Vol. 39, No. 12, pp. 2464–2469, 1994.

    Article  MathSciNet  MATH  Google Scholar 

  8. Chen, M., Wu, Q.-X., and Cui, R.-X., “Terminal Sliding Mode Tracking Control for a Class of Siso Uncertain Nonlinear Systems,” ISA transactions, Vol. 52, No. 2, pp. 198–206, 2013.

    Article  Google Scholar 

  9. Wu, Y., Yu, X., and Man, Z., “Terminal Sliding Mode Control Design for Uncertain Dynamic Systems,” Systems & Control Letters, Vol. 34, No. 5, pp. 281–287, 1998.

    Article  MathSciNet  MATH  Google Scholar 

  10. Park, K. B. and Tsuji, T., “Terminal Sliding Mode Control of Second-Order Nonlinear Uncertain Systems,” International Journal of Robust and Nonlinear Control, Vol. 9, No. 11, pp. 769–780, 1999.

    Article  MathSciNet  MATH  Google Scholar 

  11. Yu, X. and Zhihong, M., “Fast Terminal Sliding-Mode Control Design for Nonlinear Dynamical Systems,” IEEE Transaction on Circuits and Systems Part I: Fundemental Theory and Applications, Vol. 49, No. 2, pp. 261–264, 2002.

    Article  MathSciNet  Google Scholar 

  12. Feng, Y., Yu, X., and Man, Z., “Non-Singular Terminal Sliding Mode Control of Rigid Manipulators,” Automatica, Vol. 38, No. 12, pp. 2159–2167, 2002.

    Article  MathSciNet  MATH  Google Scholar 

  13. Jin, M., Lee, J., Chang, P. H., and Choi, C., “Practical Nonsingular Terminal Sliding-Mode Control of Robot Manipulators for High-Accuracy Tracking Control,” IEEE Transactions on Industrial Electronics, Vol. 56, No. 9, pp. 3593–3601, 2009.

    Article  Google Scholar 

  14. Yu, S., Yu, X., Shirinzadeh, B., and Man, Z., “Continuous Finite-Time Control for Robotic Manipulators with Terminal Sliding Mode,” Automatica, Vol. 41, No. 11, pp. 1957–1964, 2005.

    Article  MathSciNet  MATH  Google Scholar 

  15. Slotine, J.-J. E. and Li, W., “Applied Nonlinear Control,” Prentice-Hall Englewood Cliffs, pp. 41–190, 1991.

    Google Scholar 

  16. Spurgeon, S. K., “Choice of Discontinuous Control Component for Robust Sliding Mode Performance,” International Journal of Control, Vol. 53, No. 1, pp. 163–179, 1991.

    Article  MathSciNet  MATH  Google Scholar 

  17. Hernandez, D., Yu, W., and Moreno-Armendariz, M. A., “Neural PD Control with Second-Order Sliding Mode Compensation for Robot Manipulators,” Proc. of International Joint Conference on Neural Networks (IJCNN), pp. 2395–2402, 2011.

    Google Scholar 

  18. Shuzhi, S. G., Hang, C., and Woon, L., “Adaptive Neural Network Control of Robot Manipulator in Task Space,” IEEE Transactions on Industrial Electronics, Vol. 44, No. 6, pp. 746–752, 1997.

    Article  Google Scholar 

  19. Lee, M.-J. and Choi, Y.-K., “An Adaptive Neurocontroller using RBFN for Robot Manipulators,” IEEE Transactions on Industrial Electronics, Vol. 51, No. 3, pp. 711–717, 2004.

    Article  Google Scholar 

  20. Zhihong, M., Yo, X. H., Eshraghian, K., and Palaniswami, M., “A Robust Adaptive Sliding Mode Tracking Control using an RBF Neural Network for Robotic Manipulators,” Proc. of IEEE International Conference on Neural Networks, p. 2403–2408, 1995.

    Chapter  Google Scholar 

  21. Sadati, N. and Ghadami, R., “Adaptive Multi-Model Sliding Mode Control of Robotic Manipulators using Soft Computing,” Neurocomputing, Vol. 71, No. 13, pp. 2702–2710, 2008.

    Article  Google Scholar 

  22. Jiang, Y., Wang, Q., and Dong, C., “A Reaching Law based Neural Network Terminal Sliding-Mode Guidance Law Design,” Proc. of IEEE Region 10 Conference on TENCON(31194), pp. 1–5, 2013.

    Google Scholar 

  23. Lin, C.-K., “Nonsingular Terminal Sliding Mode Control of Robot Manipulators using Fuzzy Wavelet Networks,” IEEE Transactions on Fuzzy Systems, Vol. 14, No. 6, pp. 849–859, 2006.

    Article  Google Scholar 

  24. Wang, L., Chai, T., and Zha, L., “Neural-Network-Based Terminal Sliding-Mode Control of Robotic Manipulators Including Actuator Dynamics,” IEEE Transactions on Industrial Electronics, Vol. 56, No. 9, pp. 3296–3304, 2009.

    Article  Google Scholar 

  25. Perruquetti, W. and Barbot, J.-P., “Sliding Mode Control in Engineering,” CRC Press, pp. 88–136, 2002.

    Google Scholar 

  26. Moulay, E. and Perruquetti, W., “Finite Time Stability and Stabilization of a Class of Continuous Systems,” Journal of Mathematical Analysis and Applications, Vol. 323, No. 2, pp. 1430–1443, 2006.

    Article  MathSciNet  MATH  Google Scholar 

  27. Khalil, H. K., “Nonlinear Systems,” Prentice Hall, 3rd Ed., pp. 35–194, 2002.

    Google Scholar 

  28. Utkin, V. I., “Sliding Modes in Control and Optimization,” Springer-Verlag Berlin Heidelberg, 1992.

    Book  MATH  Google Scholar 

  29. Craig, J. J., “Introduction to Robotics: Mechanics and Control,” pp. 187–216, 1989.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hee-Jun Kang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tran, MD., Kang, HJ. A novel adaptive finite-time tracking control for robotic manipulators using nonsingular terminal sliding mode and RBF neural networks. Int. J. Precis. Eng. Manuf. 17, 863–870 (2016). https://doi.org/10.1007/s12541-016-0105-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12541-016-0105-x

Keywords

Navigation