Skip to main content
Log in

Ultraclean contact transfer of patterned Ag electrodes by thermal release tape for transparent conductive electrode

  • Published:
International Journal of Precision Engineering and Manufacturing Aims and scope Submit manuscript

Abstract

Silver grid electrode is a promising candidate for transparent conductive film because of its outstanding electrical, thermal, and optical properties, which can be easily tuned by changing the line width, spacing, and thickness of the metal pattern. Here, we presented the fabrication method of transparent Ag electrode with line-pattern using contact transfer technique with thermal release tape (TRT) that is easy to adhere and/or release to the substrate. To fabricate a line-patterned Ag electrode, the following efficient processes were developed: 1) preparation of line-patterned recess using thermal-roll imprinting, 2) surface modification by the anti-adhesion layer coating, 3) Ag infilling into the line-patterned recess using a doctor blade, 4) transfer of Ag electrode to the target substrate using TRT. As a result, the Ag line-patterned film with low sheet resistance (17.94 Ω/sq) and high transparency (90.28% at 550 nm) was obtained. This film can be tailored on requirement for various electronic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gaynor, W., Burkhard, G. F., McGehee, M. D., and Peumans, P., “Smooth Nanowire/Polymer Composite Transparent Electrodes, Advanced Materials, Vol. 23, No. 26, pp. 2905–2910, 2011.

    Article  Google Scholar 

  2. Lee, J., Lee, P., Lee, H., Lee, D., Lee, S. S., and Ko, S. H., “Very Long Ag Nanowire Synthesis and Its Application in a Highly Transparent, Conductive and Flexible Metal Electrode Touch Panel, Nanoscale, Vol. 4, No. 20, pp. 6408–6414, 2012.

    Article  Google Scholar 

  3. Wu, H., Kong, D., Ruan, Z., Hsu, P.-C., Wang, S., et al., “A Transparent Electrode based on a Metal Nanotrough Network, Nature Nanotechnology, Vol. 8, No. 6, pp. 421–425, 2013.

    Article  Google Scholar 

  4. Lee, M.-S., Lee, K., Kim, S.-Y., Lee, H., Park, J., et al., “High-Performance, Transparent, and Stretchable Electrodes using Graphene-Metal Nanowire Hybrid Structures, Nano Letters, Vol. 13, No. 6, pp. 2814–2821, 2013.

    Article  Google Scholar 

  5. He, T., Xie, A., Reneker, D. H., and Zhu, Y., “A Tough and High-Performance Transparent Electrode from a Scalable and Transfer-Free Method, ACS Nano, Vol. 8, No. 5, pp. 4782–4789, 2014.

    Article  Google Scholar 

  6. Kumar, A. and Zhou, C., “The Race to Replace Tin-Doped Indium Oxide: Which Material will Win, ACS Nano, Vol. 4, No. 1, pp. 11–14, 2010.

    Article  Google Scholar 

  7. Lee, J., Lee, I., Kim, T. S., and Lee, J. Y., “Efficient Welding of Silver Nanowire Networks without Post-Processing, Small, Vol. 9, No. 17, pp. 2887–2894, 2013.

    Article  Google Scholar 

  8. Hecht, D. S., Hu, L., and Irvin, G., “Emerging Transparent Electrodes based on Thin Films of Carbon Nanotubes, Graphene, and Metallic Nanostructures, Advanced Materials, Vol. 23, No. 13, pp. 1482–1513, 2011.

    Article  Google Scholar 

  9. Miller, M. S., O’Kane, J. C., Niec, A., Carmichael, R. S., and Carmichael, T. B., “Silver Nanowire/Optical Adhesive Coatings as Transparent Electrodes for Flexible Electronics, ACS Applied Materials & Interfaces, Vol. 5, No. 20, pp. 10165–10172, 2013.

    Article  Google Scholar 

  10. Leem, D. S., Edwards, A., Faist, M., Nelson, J., Bradley, D. D., and de Mello, J. C., “Efficient Organic Solar Cells with Solution-Processed Silver Nanowire Electrodes, Advanced Materials, Vol. 23, No. 38, pp. 4371–4375, 2011.

    Article  Google Scholar 

  11. Hu, L., Kim, H. S., Lee, J.-Y., Peumans, P., and Cui, Y., “Scalable Coating and Properties of Transparent, Flexible, Silver Nanowire Electrodes, ACS Nano, Vol. 4, No. 5, pp. 2955–2963, 2010.

    Article  Google Scholar 

  12. Yamada, T., Hayamizu, Y., Yamamoto, Y., Yomogida, Y., Izadi-Najafabadi, A., et al., “A Stretchable Carbon Nanotube Strain Sensor for Human-Motion Detection, Nature Nanotechnology, Vol. 6, No. 5, pp. 296–301, 2011.

    Article  Google Scholar 

  13. Yu, Z., Niu, X., Liu, Z., and Pei, Q., “Intrinsically Stretchable Polymer Light-Emitting Devices using Carbon Nanotube-Polymer Composite Electrodes, Advanced Materials, Vol. 23, No. 34, pp. 3989–3994, 2011.

    Article  Google Scholar 

  14. Kim, K. S., Zhao, Y., Jang, H., Lee, S. Y., Kim, J. M., et al., “Large-Scale Pattern Growth of Graphene Films for Stretchable Transparent Electrodes, Nature, Vol. 457, No. 7230, pp. 706–710, 2009.

    Article  Google Scholar 

  15. Lipomi, D. J., Lee, J. A., Vosgueritchian, M., Tee, B. C.-K., Bolander, J. A., and Bao, Z., “Electronic Properties of Transparent Conductive Films of Pedot: PSS on Stretchable Substrates, Chemistry of Materials, Vol. 24, No. 2, pp. 373–382, 2012.

    Article  Google Scholar 

  16. Chen, T. L., Ghosh, D. S., Mkhitaryan, V., and Pruneri, V., “Hybrid Transparent Conductive Film on Flexible Glass Formed by Hot-Pressing Graphene on a Silver Nanowire Mesh, ACS Applied Materials & Interfaces, Vol. 5, No. 22, pp. 11756–11761, 2013.

    Article  Google Scholar 

  17. Choi, C. S., Jo, Y. H., Kim, M. G., and Lee, H. M., “Control of Chemical Kinetics for Sub-10 nm Cu Nanoparticles to Fabricate Highly Conductive Ink Below 150°C, Nanotechnology, Vol. 23, No. 6, Paper No. 065601, 2012.

    Google Scholar 

  18. Hösel, M. and Krebs, F. C., “Large-Scale Roll-to-Roll Photonic Sintering of Flexo Printed Silver Nanoparticle Electrodes, Journal of Materials Chemistry, Vol. 22, No. 31, pp. 15683–15688, 2012.

    Article  Google Scholar 

  19. Russo, A., Ahn, B. Y., Adams, J. J., Duoss, E. B., Bernhard, J. T., and Lewis, J. A., “Pen-on-Paper Flexible Electronics, Advanced Materials, Vol. 23, No. 30, pp. 3426–3430, 2011.

    Article  Google Scholar 

  20. Singh, M., Haverinen, H. M., Dhagat, P., and Jabbour, G. E., “Inkjet Printing-Process and Its Applications, Advanced Materials, Vol. 22, No. 6, pp. 673–685, 2010.

    Article  Google Scholar 

  21. Nomura, K.-I., Ushijima, H., Mitsui, R., Takahashi, S., and Nakajima, S.-I., “Screen-Offset Printing for Fine Conductive Patterns, Microelectronic Engineering, Vol. 123, pp. 58–61, 2014.

    Article  Google Scholar 

  22. Lee, T.-M., Noh, J.-H., Kim, C. H., Jo, J., and Kim, D.-S., “Development of a Gravure Offset Printing System for the Printing Electrodes of Flat Panel Display, Thin Solid Films, Vol. 518, No. 12, pp. 3355–3359, 2010.

    Article  Google Scholar 

  23. Du, K., Wathuthanthri, I., Mao, W., Xu, W., and Choi, C.-H., “Large-Area Pattern Transfer of Metallic Nanostructures on Glass Substrates via Interference Lithography, Nanotechnology, Vol. 22, No. 28, Paper No. 285306, 2011.

    Google Scholar 

  24. Du, K., Wathuthanthri, I., Liu, Y., Xu, W., and Choi, C.-H., “Wafer-Scale Pattern Transfer of Metal Nanostructures on Polydimethylsiloxane (PDMS) Substrates via Holographic Nanopatterns, ACS Applied Materials & Interfaces, Vol. 4, No. 10, pp. 5505–5514, 2012.

    Article  Google Scholar 

  25. Ding, J., Du, K., Wathuthanthri, I., Choi, C.-H., Fisher, F. T., and Yang, E.-H., “Transfer Patterning of Large-Area Graphene Nanomesh via Holographic Lithography and Plasma Etching, Journal of Vacuum Science & Technology B, Vol. 32, No. 6, Paper No. 06FF01, 2014.

    Google Scholar 

  26. Kuang, P., Park, J. M., Leung, W., Mahadevapuram, R. C., Nalwa, K. S., et al., “A New Architecture for Transparent Electrodes: Relieving the Trade-Off between Electrical Conductivity and Optical Transmittance, Advanced Materials, Vol. 23, No. 21, pp. 2469–2473, 2011.

    Article  Google Scholar 

  27. Park, J. H., Lee, D. Y., Kim, Y.-H., Kim, J. K., Lee, J. H., et al., “Flexible and Transparent Metallic Grid Electrodes Prepared by Evaporative Assembly, ACS Applied Materials & Interfaces, Vol. 6, No. 15, pp. 12380–12387, 2014.

    Article  Google Scholar 

  28. Yeo, L. P., Ng, S. H., Wang, Z., Wang, Z., and de Rooij, N. F., “Micro-Fabrication of Polymeric Devices using Hot Roller Embossing, Microelectronic Engineering, Vol. 86, No. 4, pp. 933–936, 2009.

    Article  Google Scholar 

  29. Lee, M. J., Lee, N. Y., Lim, J. R., Kim, J. B., Kim, M., et al., “Antiadhesion Surface Treatments of Molds for High-Resolution Unconventional Lithography, Advanced Materials, Vol. 18, No. 23, pp. 3115–3119, 2006.

    Article  Google Scholar 

  30. Brandrup, J., Immergut, E. H., Grulke, E. A., “Polymer Handbook, John Wiley & Sons, 4th Ed., p. 521, 1999.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang-Soo Han.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Woo, J.Y., Oh, J.H., Han, H. et al. Ultraclean contact transfer of patterned Ag electrodes by thermal release tape for transparent conductive electrode. Int. J. Precis. Eng. Manuf. 17, 461–466 (2016). https://doi.org/10.1007/s12541-016-0057-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12541-016-0057-1

Keywords

Navigation