Skip to main content
Log in

Surface characteristics and bioactivation of sandblasted and acid-etched (SLA) Ti-10Nb-10Ta alloy for dental implant

  • Published:
International Journal of Precision Engineering and Manufacturing Aims and scope Submit manuscript

Abstract

Titanium and titanium alloys are amenable to processing as dental implant materials because of their low density, good mechanical properties, better biocompatibility, and excellent corrosion resistance. However, titanium-based implants cannot bond directly to bone. To induce osseointegration, numerous surface-treatment techniques have been investigated over the years to improve implant performance. In this study, we examine sandblasting and acid etching (SLA) methods to determine the various properties of SLA-treated Ti-10Nb-10Ta alloy. The SLA treatment included two steps: first, mechanically polished Ti-10Nb-10Ta alloy was subjected to grit blasting using 110-µm alumina particles, and second, the blasted alloy underwent acid etching for 9 minutes with a mixture of H2SO4 and HCl at 100°C. After etching with Keller’s etchant, the Ti-10Nb-10Ta alloy showed a lamellar structure on optical microscopy, and surface roughness was increased after SLA treatment (p<0.05). The apatite layer that formed on the SLA-treated Ti-10Nb-10Ta alloy after immersion in simulated body fluid was approximately 2 µm thick, thus improving adhesion to bone. Wettability of the SLA-treated Ti-10Nb-10Ta alloy was better than that of the non-treated one. In vitro studies showed no cytotoxicity from either the untreated or the SLA-treated Ti-10Nb-10Ta alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Liu, X., Chu, P. K., and Ding, C., “Surface Modification of Titanium, Titanium Alloys, and Related Materials for Biomedical Applications,” Materials Science and Engineering: R: Reports, Vol. 47, No. 3, pp. 49–121, 2004.

    Article  Google Scholar 

  2. Das, K., Bose, S., and Bandyopadhyay, A., “Surface Modifications and Cell-Materials Interactions with Anodized Ti,” Acta Biomaterialia, Vol. 3, No. 4, pp. 573–585, 2007.

    Article  Google Scholar 

  3. Raabe, D., Sander, B., Friák, M., Ma, D., and Neugebauer, J., “Theory-Guided Bottom-Up Design of ß-Titanium Alloys as Biomaterials based on First Principles Calculations: Theory and Experiments,” Acta Materialia, Vol. 55, No. 13, pp. 4475–4487, 2007.

    Article  Google Scholar 

  4. Pye, A., Lockhart, D., Dawson, M., Murray, C., and Smith, A., “A Review of Dental Implants and Infection,” Journal of Hospital Infection, Vol. 72, No. 2, pp. 104–110, 2009.

    Article  Google Scholar 

  5. Park, I.-S. and Bae, T.-S., “The Bioactivity of Enhanced Ti-32Nb-5Zr Alloy with Anodic Oxidation and Cyclic Calcification,” Int. J. Precis. Eng. Manuf., Vol. 15, No. 8, pp. 1595–1600, 2014.

    Article  Google Scholar 

  6. Ferguson, S., Broggini, N., Wieland, M., De Wild, M., Rupp, F., et al., “Biomechanical Evaluation of the Interfacial Strength of a Chemically Modified Sandblasted and AcidEtched Titanium Surface,” Journal of Biomedical Materials Research Part A, Vol. 78, No. 2, pp. 291–297, 2006.

    Article  Google Scholar 

  7. Grosgogeat, B., Reclaru, L., Lissac, M., and Dalard, F., “Measurement and Evaluation of Galvanic Corrosion Between Titanium/Ti6Al4V Implants and Dental Alloys by Electrochemical Techniques and Auger Spectrometry,” Biomaterials, Vol. 20, No. 10, pp. 933–941, 1999.

    Article  Google Scholar 

  8. Heimann, R. B., “Thermal Spraying of Biomaterials,” Surface and Coatings Technology, Vol. 201, No. 5, pp. 2012–2019, 2006.

    Article  Google Scholar 

  9. Lee, J.-J., Park, I.-S., Shin, G.-S., Lyu, S.-K., Ahn, S.-G., et al., “Effects of Polydopamine Coating on the Bioactivity of Titanium for Dental Implants,” Int. J. Precis. Eng. Manuf., Vol. 15, No. 8, pp. 1647–1655, 2014.

    Article  Google Scholar 

  10. Kokubo, T., Miyaji, F., Kim, H. M., and Nakamura, T., “Spontaneous Formation of Bonelike Apatite Layer on Chemically Treated Titanium Metals,” Journal of the American Ceramic Society, Vol. 79, No. 4, pp. 1127–1129, 1996.

    Article  Google Scholar 

  11. Fujibayashi, S., Neo, M., Kim, H.-M., Kokubo, T., and Nakamura, T., “Osteoinduction of Porous Bioactive Titanium Metal,” Biomaterials, Vol. 25, No. 3, pp. 443–450, 2004.

    Article  Google Scholar 

  12. Neupane, M. P., Kim, Y. K., Park, I. S., Lee, S. J., Lee, M. H., and Bae, T. S., “Effect of Electrolyte Ph on the Structure Andin Vitro Osteoblasts Response to Anodic Titanium Oxide,” Metals and Materials International, Vol. 14, No. 5, pp. 607–613, 2008.

    Article  Google Scholar 

  13. Hanawa, T., Ukai, H., and Murakami, K., “X-ray Photoelectron Spectroscopy of Calcium-Ion-Implanted Titanium,” Journal of Electron Spectroscopy and Related Phenomena, Vol. 63, No. 4, pp. 347–354, 1993.

    Article  Google Scholar 

  14. Ducheyne, P., Van Raemdonck, W., Heughebaert, J., and Heughebaert, M., “Structural Analysis of Hydroxyapatite Coatings on Titanium,” Biomaterials, Vol. 7, No. 2, pp. 97–103, 1986.

    Article  Google Scholar 

  15. Lee, I. G., Kim, Y. K., Park, I. S., Park, J. M., Lee, M. H., et al., “Influence of Electrolyte Temperature on Pure Titanium Modified by Electrochemical Treatment For Implant,” Surface and Interface Analysis, Vol. 40, No. 12, pp. 1538–1544, 2008.

    Article  Google Scholar 

  16. Zheng, C. Y., Li, S. J., Tao, X. J., Hao, Y. L., Yang, R., and Zhang, L., “Calcium Phosphate Coating o Ti-Nb-Zr-Sn Titanium Alloy,” Materials Science and Engineering: C, Vol. 27, No. 4, pp. 824–831, 2007.

    Article  Google Scholar 

  17. Cho, S. K., Park, I. S., Lee, S. J., Kim, K. A., Park, J. M., et al., “Surface Characteristics of Ti10Ta10Nb Alloy Modified by Hydrogen Peroxide Treatment For Dental Implants,” Surface and Interface Analysis, Vol. 44, No. 1, pp. 114–120, 2012.

    Article  Google Scholar 

  18. Albrektsson, T. and Jacobsson, M., “Bone-Metal Interface in Osseointegration,” The Journal of Prosthetic Dentistry, Vol. 57, No. 5, pp. 597–607, 1987.

    Article  Google Scholar 

  19. Carlsson, L., Rö stlund, T., Albrektsson, B., and Albrektsson, T., “Implant Fixation Improved by Close Fit Cylindrical Implant-Bone Interface Studied in Rabbits,” Acta Orthopaedica, Vol. 59, No. 3, pp. 272–275, 1988.

    Article  Google Scholar 

  20. Buser, D., Schenk, R., Steinemann, S., Fiorellini, J., Fox, C., and Stich, H., “Influence of Surface Characteristics on Bone Integration of Titanium Implants. A Histomorphometric Study in Miniature Pigs,” Journal of Biomedical Materials Research, Vol. 25, No. 7, pp. 889–902, 1991.

    Article  Google Scholar 

  21. Vörös, J., Wieland, M., Ruiz-Taylor, L., Textor, M., and Brunette, D. M., “Characterization of Titanium Surfaces,” Titanium In Medicine, pp. 87–144, 2001.

    Google Scholar 

  22. Wennerberg, A., Albrektsson, T., Andersson, B., and Krol, J., “A Histomorghometric Study of ScrewShaped and Removal Torque Titanium Implants with Three Different Surface Topographies,” Clinical Oral Implants Research, Vol. 6, No. 1, pp. 24–30, 1995.

    Article  Google Scholar 

  23. Boyan, B. D., Dean, D. D., Lohmann, C. H., Cochran, D. L., Sylvia, V. L., and Schwartz, Z., “The Titanium-Bone Cell Interface in Vitro: The Role of the Surface in Promoting Osteointegration,” Titanium in Medicine, pp. 561–585, 2001.

    Chapter  Google Scholar 

  24. Schwartz, Z., Lohmann, C., Oefinger, J., Bonewald, L., Dean, D., and Boyan, B., “Implant Surface Characteristics Modulate Differentiation Behavior of Cells in the Osteoblastic Lineage,” Advances in Dental Research, Vol. 13, No. 1, pp. 38–48, 1999.

    Article  Google Scholar 

  25. Buser, D., Mericske-Stern, R., Dula, K., and Lang, N. P., “Clinical Experience with One-Stage, Non-Submerged Dental Implants,” Advances in Dental Research, Vol. 13, No. 1, pp. 153–161, 1999.

    Article  Google Scholar 

  26. Wennerberg, A., Albrektsson, T., and Lausmaa, J., “Torque and Histomorphometric Evaluation of CPTitanium Screws Blasted with 25-and 75-µm-Sized Particles of Al2O3,” Journal of Biomedical Materials Research, Vol. 30, No. 2, pp. 251–260, 1996.

    Article  Google Scholar 

  27. Marinucci, L., Balloni, S., Becchetti, E., Belcastro, S., Guerra, M., et al., “Effect of Titanium Surface Roughness on Human Osteoblast Proliferation and Gene Expression in Vitro,” The International Journal of Oral & Maxillofacial Implants, Vol. 21, No. 5, pp. 719–725, 2005.

    Google Scholar 

  28. Gotfredson, K., Wennerberg, A., Johansson, C., Skovgaard, L. T., and Hjørting-Hansen, E., “Anchorage of TiO2-Blasted, HA-Coated, and Machined Implants: An Experimental Study with Rabbits,” Journal of Biomedical Materials Research, Vol. 29, No. 10, pp. 1223–1231, 1995.

    Article  Google Scholar 

  29. Becker, W., Becker, B. E., Ricci, A., Bahat, O., Rosenberg, E., et al., “A Prospective Multicenter Clinical Trial Comparing One-and Two-Stage Titanium Screw-Shaped Fixtures with One-Stage Plasma-Sprayed Solid-Screw Fixtures,” Clinical Implant Dentistry and Related Research, Vol. 2, No. 3, pp. 159–165, 2000.

    Article  Google Scholar 

  30. Albrektsson, T. and Wennerberg, A., “The Impact of Oral Implants-Past and Future, 1966-2042,” Journal of the Canadian Dental Association, Vol. 71, No. 5, Paper No. 327, 2005.

    Google Scholar 

  31. Le Guéhennec, L., Soueidan, A., Layrolle, P., and Amouriq, Y., “Surface Treatments of Titanium Dental Implants for Rapid Osseointegration,” Dental Materials, Vol. 23, No. 7, pp. 844–854, 2007.

    Article  Google Scholar 

  32. Albrektsson, T., Brå nemark, P.-I., Hansson, H.-A., and Lindström, J., “Osseointegrated Titanium Implants: Requirements for Ensuring a Long-Lasting, Direct Bone-to-Implant Anchorage in Man,” Acta Orthopaedica, Vol. 52, No. 2, pp. 155–170, 1981.

    Article  Google Scholar 

  33. Webb, K., Hlady, V., and Tresco, P. A., “Relative Importance of Surface Wettability and Charged Functional Groups on NIH 3T3 Fibroblast Attachment, Spreading, and Cytoskeletal Organization,” Journal of Biomedical Materials Research, Vol. 41, No. 3, pp. 422, 1998.

    Article  Google Scholar 

  34. Ciapetti, G., Cenni, E., Pratelli, L., and Pizzoferrato, A., “In Vitro Evaluation of Cell/Biomaterial Interaction by MTT Assay,” Biomaterials, Vol. 14, No. 5, pp. 359–364, 1993.

    Article  Google Scholar 

  35. Kostoryz, E., Tong, P., Chappelow, C., Eick, J., Glaros, A., and Yourtee, D., “In Vitro Cytotoxicity of Solid Epoxy-based Dental Resins and their Components,” Dental Materials, Vol. 15, No. 5, pp. 363–373, 1999.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min-Ho Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bok, WM., Kim, SY., Lee, SJ. et al. Surface characteristics and bioactivation of sandblasted and acid-etched (SLA) Ti-10Nb-10Ta alloy for dental implant. Int. J. Precis. Eng. Manuf. 16, 2185–2192 (2015). https://doi.org/10.1007/s12541-015-0281-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12541-015-0281-0

Keywords

Navigation