Thermobattery based on CNT coated carbon textile and thermoelectric electrolyte

  • Kyoung Min Bae
  • Hee Doo Yang
  • Lemma Teshome Tufa
  • Tae June Kang
Article

Abstract

In this work, we report a thermobattery that can efficiently harvest low-grade waste heat. The thermobattery utilizes temperature dependence of ferri/ferrocyanide (Fe(CN)63−/Fe(CN)64−) redox potential and employs the porous carbon textile electrode that is coated with single-walled carbon nanotube (SWNT). Simple and scalable dipping and drying process was applied to prepare the SWNT coated textile electrodes (SWNT-CT). The SWNT coating not only decreases the sheet conductance of the textile remarkably but also provides the number of available reaction sites for thermogalvanic conversion, resulting in improving electrical outputs. The capability for power generation in the thermobattery was quantitatively investigated by measuring potential versus current curves. Discharge behavior of the thermobattery was also discussed to provide an understanding of the internal resistances that limit output electrical power.

Keywords

Thermoelectric effect Potassium ferri/ferrocyanide Carbon nanotube Carbon textile 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hasnain, S. M., “Review on Sustainable Thermal Energy Storage Technologies, Part I: Heat Storage Materials and Techniques,” Energy Conversion and Management, vol. 39, no. 11, pp. 1127–1138, 1998.CrossRefGoogle Scholar
  2. 2.
    Starner, T., “Human-powered Wearable Computing,” IBM Systems Journal, Vol. 35, No. 3.4, pp. 618–629, 1996.CrossRefGoogle Scholar
  3. 3.
    Paradiso, J. A. and Starner, T., “Energy Scavenging for Mobile And Wireless Electronics,” IEEE Pervasive Computing, Vol. 4, No.1, pp. 18–27, 2005.CrossRefGoogle Scholar
  4. 4.
    Bhandari, B., Poudel, S. R., Lee, K. T., and Ahn, S. H., “Mathematical Modeling of Hybrid Renewable Energy System: A Review on Small Hydro-Solar-Wind Power Generation,” Int. J. Precis. Eng. Manuf.-Green Tech., vol. 1, no. 2, pp. 157–173, 2014.CrossRefGoogle Scholar
  5. 5.
    Bhandari, B., Lee, K. T., Lee G. Y., Cho, Y. M., and Ahn S. H., “Optimization of Hybrid Renewable Energy Power Systems: A Review,” Int. J. Precis. Eng. Manuf.-Green Tech., vol. 2, no. 1, pp. 99–112, 2015.CrossRefGoogle Scholar
  6. 6.
    Bell, L. E., “Cooling, Heating, Generating Power, and Recovering Waste Heat with Thermoelectric Systems,” Science, vol. 321, no. 5895, pp. 1457–1461, 2008.CrossRefGoogle Scholar
  7. 7.
    Gou, X., Xiao, H., and Yang, S., “Modeling, Experimental Study and Optimization on Low-temperature Waste Heat Thermoelectric Generator System,” Applied Energy, vol. 87, no. 10, pp. 3131–3136, 2010.CrossRefGoogle Scholar
  8. 8.
    Hsu, C. T., Huang, G. Y., Chu, H. S., Yu, B., and Yao, D. J., “Experiments and Simulations on Low-temperature Waste Heat Harvesting System by Thermoelectric Power Generators,” Applied Energy, vol. 88, no. 4, pp. 1291–1297, 2011.CrossRefGoogle Scholar
  9. 9.
    Navid, A., Vanderpool, D., Bah, A., and Pilon, L., “Towards Optimization of a Pyroelectric Energy Converter for Harvesting Waste Heat,” International Journal of Heat and Mass Transfer, vol. 53, no. 19–20, pp. 4060–4070, 2010.MATHCrossRefGoogle Scholar
  10. 10.
    Niu, X., Yu, J., and Wang, S., “Experimental Study on Low-Temperature Waste Heat Thermoelectric Generator,” Journal of Power Sources, vol. 188, no. 2, pp. 621–626, 2009.CrossRefGoogle Scholar
  11. 11.
    Wu, C., “Analysis of Waste-Heat Thermoelectric Power Generators,” Applied Thermal Engineering, vol. 16, no. 1, pp. 63–69, 1996.CrossRefGoogle Scholar
  12. 12.
    Yu, C. and Chau, K. T, “Thermoelectric Automotive Waste Heat Energy Recovery using Maximum Power Point Tracking,” Energy Conversion and Management, vol. 50, no. 6, pp. 1506–1512, 2009.CrossRefGoogle Scholar
  13. 13.
    Ujihara, M., Carman, G. P, and Lee, D. G., “Thermal Energy Harvesting Device using Ferromagnetic Materials,” Applied Physics Letters, vol. 91, no. 9, Paper No. 093508, 2007.CrossRefGoogle Scholar
  14. 14.
    Nam, S. K. and Lee, S. K., “The Effect of Ti Adhesion Layer on the Thermoelectric Noise of a High Resolution Thermopile for Nanowatt Heat Flux Sensor,” Int. J. Precis. Eng. Manuf., vol. 15, no. 11, pp. 2391–2396, 2014.CrossRefGoogle Scholar
  15. 15.
    Kim, H., Lee, Y., and Lee, K. H., “Design of a Thermoelectric Layer for a Micro Power Generator,” Int. J. Precis. Eng. Manuf., vol. 13, no. 2, pp. 261–267, 2012.CrossRefGoogle Scholar
  16. 16.
    Gunawan, A., Lin, C.-H., Buttry, D. A., Mujica, V., Taylor, R. A., et al., “Liquid Thermoelectrics: Review of Recent and Limited New Data of Thermogalvanic Cell Experiments,” Nanoscale and Microscale Thermophysical Engineering, Vol. 17, No.4, pp. 304–323, 2013.CrossRefGoogle Scholar
  17. 17.
    Hu, R., Cola, B. A., Haram, N., Barisci, J. N., Lee, S., et al., “Harvesting Waste Thermal Energy using a Carbon-nanotube-based Thermo-electrochemical Cell,” Nano Letters, vol. 10, no. 3, pp. 838–846, 2010.CrossRefGoogle Scholar
  18. 18.
    Romano, M. S., Li, N., Antiohos, D., Razal, J. M., Nattestad, A., et al., “Carbon Nanotube-Reduced Graphene Oxide Composites for Thermal Energy Harvesting Applications,” Advanced Materials, vol. 25, no. 45, pp. 6602–6606, 2013.CrossRefGoogle Scholar
  19. 19.
    Kang, T. J., Fang, S., Kozlov, M. E., Haines, C. S., Li, N., et al., “Electrical Power from Nanotube and Graphene Electrochemical Thermal Energy Harvesters,” Advanced Functional Materials, vol. 22, no. 3, pp. 477–489, 2012.MATHCrossRefGoogle Scholar
  20. 20.
    Bonetti, M., Nakamae, S., Roger, M., and Guenoun, P., “Huge Seebeck Coefficients in Nonaqueous Electrolytes,” The Journal of Chemical Physics, Vol. 134, No.11, pp. 114513, 2011.CrossRefGoogle Scholar
  21. 21.
    Kuzminskii, Y. V., Zasukha, V. A., and Kuzminskaya, G. Y., “Thermoelectric Effects in Electrochemical Systems. Nonconventional Thermogalvanic Cells,” Journal of Power Sources, vol. 52, no. 2, pp. 231–242, 1994.CrossRefGoogle Scholar
  22. 22.
    Abraham, T. J., MacFarlane, D. R., and Pringle, J. M., “Seebeck Coefficients in Ionic Liquids-Prospects for Thermo-Electrochemical Cells,” Chemical Communications, vol. 47, no. 22, pp. 6260–6262, 2011.CrossRefGoogle Scholar
  23. 23.
    Hu, L., Pasta, M., Mantia, F. L., Cui, L., Jeong, S., et al., “Stretchable, Porous, and Conductive Energy Textiles,” Nano Letters, vol. 10, no. 2, pp. 708–714, 2010.CrossRefGoogle Scholar
  24. 24.
    Kang, T. J., Choi, A., Kim, D. H., Jin, K., Seo, D. K., et al., “Electromechanical Properties of CNT-coated Cotton Yarn for Electronic Textile Applications,” Smart Materials and Structures. Vol. 20, No.1, Paper No. 015004, 2011.CrossRefGoogle Scholar
  25. 25.
    Jiang, L., Gao, L., and Sun, J., “Production of Aqueous Colloidal Dispersions of Carbon Nanotubes,” Journal of Colloid and Interface Science, vol. 260, no. 1, pp. 89–94, 2003.CrossRefGoogle Scholar
  26. 26.
    Kang, T. J., Yoon, J. W., Kim, D. I., Kum, S. S., Huh, Y. H., et al., “Sandwich-Type Laminated Nanocomposites Developed by Selective Dip-Coating of Carbon Nanotubes,” Advanced Materials, vol. 19, no. 3, pp. 427–432, 2007.CrossRefGoogle Scholar
  27. 27.
    Hu, C. Y., Xu, Y. J., Duo, S. W., Zhang, R. F., and Li, M. S. “Non-Covalent Functionalization of Carbon Nanotubes with Surfactants and Polymers,” Journal of the Chinese Chemical Society, vol. 56, no. 2, pp. 234–239, 2009.CrossRefGoogle Scholar
  28. 28.
    Moore, V. C., Strano, M. S., Haroz, E. H., Hauge, R. H., and Smalley, R. E., “Individually Suspended Single-walled Carbon Nanotubes in Various Surfactants,” Nano Letters, vol. 3, no. 10, pp. 1379–1382, 2003.CrossRefGoogle Scholar
  29. 29.
    Luo, H., Shi, Z., Li, N., Gu, Z., and Zhuang, Q., “Investigation of the Electrochemical and Electrocatalytic Behavior of Single-wall Carbon Nanotube Film on a Glassy Carbon Electrode,” Analytical Chemistry, vol. 73, no. 5, pp. 915–920, 2001.CrossRefGoogle Scholar
  30. 30.
    Wang, J., Li, M., Shi, Z., Li, N., and Gu, Z., “Direct Electrochemistry of Cytochrome c at a Glassy Carbon Electrode Modified with Single-wall Carbon Nanotubes,” Analytical Chemistry, vol. 74, no. 9, pp. 1993–1997, 2002.CrossRefGoogle Scholar
  31. 31.
    Zhao, Q., Gan, Z., and Zhuang, Q., “Electrochemical Sensors based on Carbon Nanotubes,” Electroanalysis, vol. 29, no. 9, pp. 1609–1613, 2010.Google Scholar

Copyright information

© Korean Society for Precision Engineering and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Kyoung Min Bae
    • 1
  • Hee Doo Yang
    • 2
  • Lemma Teshome Tufa
    • 1
  • Tae June Kang
    • 1
    • 2
  1. 1.Department of Nanofusion TechnologyPusan National UniversityBusanSouth Korea
  2. 2.Department of Nanomechatronics EngineeringPusan National UniversityBusanSouth Korea

Personalised recommendations