Skip to main content
Log in

Effect of the initial crystallographic texture on microstructure and mechanical properties of Mg-3Al-1Zn sheet alloy processed by half channel angular extrusion (HCAE)

  • Published:
International Journal of Precision Engineering and Manufacturing Aims and scope Submit manuscript

Abstract

In this work, half channel angular extrusion, a recently developed severe plastic deformation (SPD) process, applied to AZ31 Mg alloy. Effects of the initial microstructure of AZ31 alloy on the microstructural development such as the grain refinement and texture evolution during the half channel angular extrusion (HCAE) has been studied. It was found that the grains of the AZ31 alloys can be refined remarkably by single pass of HCAE than other SPD techniques and not only the grain refinement but also the deformation induced textures result in a noticeable enhancement of mechanical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lou, X. Y., Li, M., Boger, R., Agnew, S. R., and Wagoner, R. H., “Hardening Evolution of AZ31B Mg Sheet,” International Journal of Plasticity, Vol. 23, No. 1, pp. 44–86, 2007.

    Article  MATH  Google Scholar 

  2. Khan, A. S., Pandey, A., Gnäupel-Herold, T., and Mishra, R. K., “Mechanical Response and Texture Evolution of AZ31 Alloy at Large Strains for Different Strain Rates and Temperatures,” International Journal of Plasticity, Vol. 27, No. 5, pp. 688–706, 2011.

    Article  MATH  Google Scholar 

  3. Yoon, J., Cazacu, O., and Mishra, R. K., “Constitutive Modeling of AZ31 Sheet Alloy with Application to Axial Crushing,” Materials Science and Engineering: A, Vol. 565, pp. 203–212, 2013.

    Article  Google Scholar 

  4. Yoon, J., Lee, J., and Lee, J., “Enhancement of the Microstructure and Mechanical Properties in as-Forged Mg–8Al–0.5Zn Alloy using T5 Heat Treatment,” Materials Science and Engineering: A, Vol. 586, pp. 306–312, 2013.

    Article  Google Scholar 

  5. Yoon, J. and Park, S., “Forgeability Test of Extruded Mg–Sn–Al–Zn Alloys under Warm Forming Conditions,” Materials & Design, Vol. 55, pp. 300–308, 2014.

    Article  Google Scholar 

  6. Cazacu, O. and Barlat, F., “A Criterion for Description of Anisotropy and Yield Differential Effects in Pressure-Insensitive Metals,” International Journal of Plasticity, Vol. 20, No. 11, pp. 2027–2045, 2004.

    Article  MATH  Google Scholar 

  7. Cazacu, O., Plunkett, B., and Barlat, F., “Orthotropic Yield Criterion for Hexagonal Closed Packed Metals,” International Journal of Plasticity, Vol. 22, No. 7, pp. 1171–1194, 2006.

    Article  MATH  Google Scholar 

  8. Zhilyaev, A., Nurislamova, G., Kim, B.-K., Baró, M., Szpunar, J., and Langdon, T., “Experimental Parameters Influencing Grain Refinement and Microstructural Evolution during high-Pressure Torsion,” Acta Materialia, Vol. 51, No. 3, pp. 753–765, 2003.

    Article  Google Scholar 

  9. Iwahashi, Y., Wang, J., Horita, Z., Nemoto, M., and Langdon, T. G., “Principle of Equal-Channel Angular Pressing for the Processing of Ultra-Fine Grained Materials,” Scripta Materialia, Vol. 35, No. 2, pp. 143–146, 1996.

    Article  Google Scholar 

  10. Iwahashi, Y., Horita, Z., Nemoto, M., and Langdon, T. G., “The Process of Grain Refinement in Equal-Channel Angular Pressing,” Acta Materialia, Vol. 46, No. 9, pp. 3317–3331, 1998.

    Article  Google Scholar 

  11. Nakashima, K., Horita, Z., Nemoto, M., and Langdon, T. G., “Development of a Multi-Pass Facility for Equal-Channel Angular Pressing to high Total Strains,” Materials Science and Engineering: A, Vol. 281, No. 1, pp. 82–87, 2000.

    Article  Google Scholar 

  12. Kim, K. J., Yang, D. Y., and Yoon, J. W., “Microstructural Evolution and Its Effect on Mechanical Properties of Commercially Pure Aluminum Deformed by Ecae (Equal Channel Angular Extrusion) Via Routes A and C,” Materials Science and Engineering: A, Vol. 527, No. 29, pp. 7927–7930, 2010.

    Article  Google Scholar 

  13. Nie, K., Wu, K., Wang, X., Deng, K., Wu, Y., and Zheng, M., “Multidirectional Forging of Magnesium Matrix Composites: Effect on Microstructures and Tensile Properties,” Materials Science and Engineering: A, Vol. 527, No. 27, pp. 7364–7368, 2010.

    Article  Google Scholar 

  14. Chen, Q., Shu, D., Hu, C., Zhao, Z., and Yuan, B., “Grain Refinement in an As-Cast AZ61 Magnesium Alloy Processed by Multi-Axial Forging under the Multitemperature Processing Procedure,” Materials Science and Engineering: A, Vol. 541, No. pp. 98–104, 2012.

    Article  Google Scholar 

  15. Saito, Y., Utsunomiya, H., Tsuji, N., and Sakai, T., “Novel Ultrahigh Straining Process for Bulk Materials—Development of the Accumulative Roll-Bonding (ARB) Process,” Acta Materialia, Vol. 47, No. 2, pp. 579–583, 1999.

    Article  Google Scholar 

  16. Kim, K. and Yoon, J., “Evolution of the Microstructure and Mechanical Properties of AZ61 Alloy Processed by Half Channel Angular Extrusion (HCAE), a Novel Severe Plastic Deformation Process,” Materials Science and Engineering: A, Vol. 578, pp. 160–166, 2013.

    Article  Google Scholar 

  17. Mabuchi, M., Ameyama, K., Iwasaki, H., and Higashi, K., “Low temperature Superplasticity of AZ91 Magnesium Alloy with Non-Equilibrium Grain Boundaries,” Acta Materialia, Vol. 47, No. 7, pp. 2047–2057, 1999.

    Article  Google Scholar 

  18. Yamashita, A., Horita, Z., and Langdon, T. G., “Improving the Mechanical Properties of Magnesium and a Magnesium Alloy through Severe Plastic Deformation,” Materials Science and Engineering: A, Vol. 300, No. 1, pp. 142–147, 2001.

    Article  Google Scholar 

  19. Watanabe, H., Mukai, T., Ishikawa, K., and Higashi, K., “Low Temperature Superplasticity of a Fine-Grained ZK60 Magnesium Alloy Processed by Equal-Channel-Angular Extrusion,” Scripta Materialia, Vol. 46, No. 12, pp. 851–856, 2002.

    Article  Google Scholar 

  20. Agnew, S. R., Mehrotra, P., Lillo, T. M., Stoica, G. M., and Liaw, P. K., “Texture Evolution of Five Wrought Magnesium Alloys during Route a Equal Channel Angular Extrusion: Experiments and Simulations,” Acta Materialia, Vol. 53, No. 11, pp. 3135–3146, 2005.

    Article  Google Scholar 

  21. Suwas, S., Gottstein, G., and Kumar, R., “Evolution of Crystallographic Texture during Equal Channel Angular Extrusion (ECAE) and Its Effects on Secondary Processing of Magnesium,” Materials Science and Engineering: A, Vol. 471, No. 1, pp. 1–14, 2007.

    Article  Google Scholar 

  22. Xia, K., Wang, J. T., Wu, X., Chen, G., and Gurvan, M., “Equal Channel Angular Pressing of Magnesium Alloy AZ31,” Materials Science and Engineering: A, Vol. 410, pp. 324–327, 2005.

    Article  Google Scholar 

  23. Tang, W. N., Chen, R. S., Zhou, J., and Han, E. H., “Effects of ECAE Temperature and Billet Orientation on the Microstructure, Texture Evolution and Mechanical Properties of a Mg–Zn–Y–Zr Alloy,” Materials Science and Engineering: A, Vol. 499, No. 1, pp. 404–410, 2009.

    Article  Google Scholar 

  24. Al-Maharbi, M., Karaman, I., Beyerlein, I. J., Foley, D., Hartwig, K. T., et al., “Microstructure, Crystallographic Texture, and Plastic Anisotropy Evolution in an Mg Alloy during Equal Channel Angular Extrusion Processing,” Materials Science and Engineering: A, Vol. 528, No. 25, pp. 7616–7627, 2011.

    Article  Google Scholar 

  25. Foley, D. C., Al-Maharbi, M., Hartwig, K. T., Karaman, I., Kecskes, L. J., and Mathaudhu, S. N., “Grain Refinement vs. Crystallographic Texture: Mechanical Anisotropy in a Magnesium Alloy,” Scripta Materialia, Vol. 64, No. 2, pp. 193–196, 2011.

    Article  Google Scholar 

  26. Yamashita, A., Horita, Z., and Langdon, T. G., “Improving the Mechanical Properties of Magnesium and a Magnesium Alloy through Severe Plastic Deformation,” Materials Science and Engineering: A, Vol. 300, No. 1, pp. 142–147, 2001.

    Article  Google Scholar 

  27. Lapovok, R., Thomson, P. F., Cottam, R., and Estrin, Y., “The Effect of Grain Refinement by Warm Equal Channel Angular Extrusion on Room Temperature Twinning in Magnesium Alloy ZK60,” Journal of Materials Science, Vol. 40, No. 7, pp. 1699–1708, 2005.

    Article  Google Scholar 

  28. Koike, J., Kobayashi, T., Mukai, T., Watanabe, H., Suzuki, M., et al., “The Activity of Non-Basal Slip Systems and Dynamic Recovery at Room Temperature in Fine-Grained AZ31B Magnesium Alloys,” Acta Materialia, Vol. 51, No. 7, pp. 2055–2065, 2003.

    Article  Google Scholar 

  29. Kim, W. J., An, C. W., Kim, Y. S., and Hong, S. I., “Mechanical Properties and Microstructures of an AZ61 Mg Alloy Produced by Equal Channel Angular Pressing,” Scripta Materialia, Vol. 47, No. 1, pp. 39–44, 2002.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonghun Yoon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, K., Yoon, J. Effect of the initial crystallographic texture on microstructure and mechanical properties of Mg-3Al-1Zn sheet alloy processed by half channel angular extrusion (HCAE). Int. J. Precis. Eng. Manuf. 16, 1021–1027 (2015). https://doi.org/10.1007/s12541-015-0132-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12541-015-0132-z

Keywords

Navigation