Skip to main content
Log in

Plasmonic nanoantennae fabricated by focused Ion beam milling

  • Published:
International Journal of Precision Engineering and Manufacturing Aims and scope Submit manuscript

Abstract

We show a novel approach to fabricate plasmonic nanoantennae based on a maskless focused ion beam nanoring patterning process. Antenna nanoarrays with desired outlines are achieved by precisely controlling the geometric parameters during the milling process. Various nanoantenna designs of bow-tie, nanoclusters (pentamers), and ellipsoid shaped satellites surrounded particle lattices are realized. The whole fabrication method is programmable and monolithic since only a one-step milling process is involved. The optical properties are experimentally characterized. Such nanoantennae may find extensive applications in chemical/bio-sensing due to remarkably enhanced near field intensity at the plasmon resonance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ri :

inner radius of the ring aperture for nanoantennae patterning

ro :

outer radius of the ring aperture for nanoantennae patterning

References

  1. Schuller, J. A., Barnard, E. S., Cai, W., Jun, Y. C., White, J. S., and Brongersma, M. L., “Plasmonics for Extreme Light Concentration and Manipulation,” Nature Materials, Vol. 9, No. 3, pp. 193–204, 2010.

    Article  Google Scholar 

  2. Genet, C. and Ebbesen, T. W., “Light in Tiny Holes,” Nature, Vol. 445, No. 7123, pp. 39–46, 2007.

    Article  Google Scholar 

  3. Huang, C. F., Cheng, H. C., Lin, Y., Wu, C. W., and Shen, Y. K., “Study on Cellar Behaviors on Different Nanostructures by Nanoporous Alumina Template,” Int. J. Precis. Eng. Manuf., Vol. 15, No. 4, pp. 689–693, 2014.

    Article  Google Scholar 

  4. Ali, M. Y., Hung, W., and Yongqi, F. Q., “A Review of Focused Ion Beam Sputtering,” Int. J. Precis. Eng. Manuf., Vol. 11, No. 1, pp. 157–170, 2010.

    Article  Google Scholar 

  5. Barnes, W. L., Dereux, A., and Ebbesen, T. W., “Surface Plasmon Subwavelength Optics,” Nature, Vol. 424, No. 6950, pp. 824–830, 2003.

    Article  Google Scholar 

  6. Kauranen, M. and Zayats, A. V., “Nonlinear Plasmonics,” Nature Photonics, Vol. 6, No. 11, pp. 737–748, 2012.

    Article  Google Scholar 

  7. Lal, S., Link, S., and Halas, N. J., “Nano-Optics from Sensing to Waveguiding,” Nature Photonics, Vol. 1, No. 11, pp. 641–648, 2007.

    Article  Google Scholar 

  8. Zheludev, N. I. and Kivshar, Y. S., “From Metamaterials to Metadevices,” Nature Materials, Vol. 11, No. 11, pp. 917–924, 2012.

    Article  Google Scholar 

  9. Ni, X., Emani, N. K., Kildishev, A. V., Boltasseva, A., and Shalaev, V. M., “Broadband Light Bending with Plasmonic Nanoantennas,” Science, Vol. 335, No. 6067, pp. 427–427, 2012.

    Article  Google Scholar 

  10. Knight, M. W., Liu, L., Wang, Y., Brown, L., Mukherjee, S., et al., “Aluminum Plasmonic Nanoantennas,” Nano Letters, Vol. 12, No. 11, pp. 6000–6004, 2012.

    Article  Google Scholar 

  11. Jung, H., Kim, Y., Kim, S., Jang, J., and Hahn, J. W., “Sub-Micro to Nanometer Scale Laser Direct Writing Techniques with a Contact Probe,” Int. J. Precis. Eng. Manuf., Vol. 12, No. 5, pp. 877–883, 2011.

    Article  Google Scholar 

  12. Da Yan, Y., Da Gao, W., Hu, Z. J., Zhao, X. S., and Yan, J. C., “Polymer Nanostructured Components Machined Directly by the Atomic Force Microscopy Scratching Method,” Int. J. Precis. Eng. Manuf., Vol. 13, No. 2, pp. 269–273, 2012.

    Article  Google Scholar 

  13. Kosmeier, S., De Luca, A. C., Zolotovskaya, S., Di Falco, A., Dholakia, K., and Mazilu, M., “Coherent Control of Plasmonic Nanoantennas using Optical Eigenmodes,” Scientific Reports, Vol. 3, Article No. 1808, 2013.

    Google Scholar 

  14. Kosmeier, S., De Luca, A. C., Zolotovskaya, S., Di Falco, A., Dholakia, K., and Mazilu, M., “Coherent Control of Plasmonic Nanoantennas using Optical Eigenmodes,” Scientific Reports, Vol. 3, Article No. 1808, 2013.

    Google Scholar 

  15. Wen, J., Romanov, S., and Peschel, U., “Excitation of Plasmonic Gap Waveguides by Nanoantennas,” Optics Express, Vol. 17, No. 8, pp. 5925–5932, 2009.

    Article  Google Scholar 

  16. Ünlü, E. S., Tok, R. U., and Şendur, K., “Broadband Plasmonic Nanoantenna with an Adjustable Spectral Response,” Optics Express, Vol. 19, No. 2, pp. 1000–1006, 2011.

    Article  Google Scholar 

  17. Chen, Y. Q. and Lu, C. J., “Surface Modification on Silver Nanoparticles for Enhancing Vapor Selectivity of Localized Surface Plasmon Resonance Sensors,” Sensors and Actuators B: Chemical, Vol. 135, No. 2, pp. 492–498, 2009.

    Article  Google Scholar 

  18. Chen, C. D., Cheng, S. F., Chau, L. K., and Wang, C. C., “Sensing Capability of the Localized Surface Plasmon Resonance of Gold Nanorods,” Biosensors and Bioelectronics, Vol. 22, No. 6, pp. 926–932, 2007.

    Article  Google Scholar 

  19. Endo, T., Shibata, A., Yanagida, Y., Higo, Y., and Hatsuzawa, T., “Localized Surface Plasmon Resonance Optical Characteristics for Hydrogen Peroxide Using Polyvinylpyrrolidone Coated Silver Nanoparticles,” Materials Letters, Vol. 64, No. 19, pp. 2105–2108, 2010.

    Article  Google Scholar 

  20. Rani, M., Sharma, N. K., and Sajal, V., “Localized Surface Plasmon Resonance based Fiber Optic Sensor with Nanoparticles,” Optics Communications, Vol. 292, No. pp. 92–100, 2013.

    Article  Google Scholar 

  21. Tu, M. H., Sun, T., and Grattan, K. T. V., “LSPr Optical Fibre Sensors based on Hollow Gold Nanostructures,” Sensors and Actuators B: Chemical, Vol. 191, pp. 37–44, 2014.

    Article  Google Scholar 

  22. Anker, J. N., Hall, W. P., Lyandres, O., Shah, N. C., Zhao, J., and Van Duyne, R. P., “Biosensing with Plasmonic Nanosensors,” Nature Materials, Vol. 7, No. 6, pp. 442–453, 2008.

    Article  Google Scholar 

  23. Zhao, Y., Chen, D., Yue, H., Spiering, M. M., Zhao, C., et al., “Dark-Field Illumination on Zero-Mode Waveguide/Microfluidic Hybrid Chip Reveals T4 Replisomal Protein Interactions,” Nano Letters, Vol. 14, No. 4, pp. 1952–1960, 2014.

    Article  Google Scholar 

  24. Si, G., Zhao, Y., Liu, H., Teo, S., Zhang, M., et al., “Annular Aperture Array based Color Filter,” Applied Physics Letters, Vol. 99, No. 3, Paper No. 033105, 2011.

    Google Scholar 

  25. Si, G., Zhao, Y., Lv, J., Lu, M., Wang, F., et al., “Reflective Plasmonic Color Filters based on Lithographically Patterned Silver Nanorod Arrays,” Nanoscale, Vol. 5, No. 14, pp. 6243–6248, 2013.

    Article  Google Scholar 

  26. Si, G., Zhao, Y., Leong, E. S. P., and Liu, Y. J., “Liquid-Crystal- Enabled Active Plasmonics: A Review,” Materials, Vol. 7, No. 2, pp. 1296–1317, 2014.

    Article  Google Scholar 

  27. Si, G., Teo, E. J., Bettiol, A. A., Teng, J., and Danner, A. J., “Suspended Slab and Photonic Crystal Waveguides in Lithium Niobate,” Journal of Vacuum Science & Technology B, Vol. 28, No. 2, pp. 316–320, 2010.

    Article  Google Scholar 

  28. Jiang, X., Gu, Q., Wang, F., Lv, J., Ma, Z., and Si, G., “Fabrication of Coaxial Plasmonic Crystals by Focused Ion Beam Milling and Electron-Beam Lithography,” Materials Letters, Vol. 100, pp. 192–194, 2013.

    Article  Google Scholar 

  29. Si, G., Danner, A. J., Teo, S. L., Teo, E. J., Teng, J., and Bettiol, A. A., “Photonic Crystal Structures with Ultrahigh Aspect Ratio in Lithium Niobate Fabricated by Focused Ion Beam Milling,” Journal of Vacuum Science & Technology B, Vol. 29, No. 2, Paper No. 021205, 2011.

    Google Scholar 

  30. JunáLiu, Y., “Direct and Accurate Patterning of Plasmonic Nanostructures with Ultrasmall Gaps,” Nanoscale, Vol. 5, No. 10, pp. 4309–4313, 2013.

    Article  Google Scholar 

  31. Chang, W. S., Lassiter, J. B., Swanglap, P., Sobhani, H., Khatua, Set al., “A Plasmonic Fano Switch,” Nano Letters, Vol. 12, No. 9, pp. 4977–4982, 2012.

    Article  Google Scholar 

  32. Pakizeh, T. and Kall, M., “Unidirectional Ultracompact Optical Nanoantennas,” Nano Letters, Vol. 9, No. 6, pp. 2343–2349, 2009.

    Article  Google Scholar 

  33. Piao, X., Yu, S., and Park, N., “Control of Fano Asymmetry in Plasmon Induced Transparency and Its Application to Plasmonic Waveguide Modulator,” Optics Express, Vol. 20, No. 17, pp. 18994–18999, 2012.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guang-Yuan Si.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lv, JT., Yan, Y., Zhang, WK. et al. Plasmonic nanoantennae fabricated by focused Ion beam milling. Int. J. Precis. Eng. Manuf. 16, 851–855 (2015). https://doi.org/10.1007/s12541-015-0112-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12541-015-0112-3

Keywords

Navigation