Skip to main content
Log in

Effects of polydopamine coating on the bioactivity of titanium for dental implants

  • Published:
International Journal of Precision Engineering and Manufacturing Aims and scope Submit manuscript

Abstract

The effect of polydopamine coated titanium such as surface roughness, wettability, cell growth and toxicity, and corrosion resistance. The polydopamine-coated titanium was successfully prepared from dopamine solution and bright polydopamine granules were randomly distributed on titanium surface after coating process. The surface roughness was not significantly decreased in the pure titanium (P>0.05), but significantly decreased (P<0.05) in the spark anodized titanium after the dopamine coating treatment. The contact angle of polydopamine-coated titanium surface was found to be lower than that of the untreated titanium surface. At the potentiodynamic polarization corrosion test, polydopamine-coated titanium has better corrosion-resistance than untreated titanium. The resistance of cytotoxicity is decreased by dopamine coating surface treatment (P<0.05). Findings from this research suggested that polydopamine coating offer a versatile approach for the titanium surface modification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Buser, D., Martin, W., and Belser, U. C., “Optimizing Esthetics for Implant Restorations in the Anterior Maxilla: Anatomic and Surgical Considerations,” The International Journal of Oral & Maxillofacial Implants, Vol. 19, pp. 43–61, 2003.

    Google Scholar 

  2. Elias, C. N., Oshida, Y., Lima, J. H. C., and Muller, C. A., “Relationship between Surface Properties (Roughness, Wettability and Morphology) of Titanium and Dental Implant Removal Torque,” Journal of the Mechanical Behavior of Biomedical Materials, Vol. 1, No. 3, pp. 234–242, 2008.

    Article  Google Scholar 

  3. Brånemark, P. I., Breine, U., Adell, R., Hansson, B., Lindström, J., and Ohlsson, Å., “Intra-Osseous Anchorage of Dental Prostheses: I. Experimental Studies,” Scandinavian Journal of Plastic and Reconstructive Surgery and Hand Surgery, Vol. 3, No. 2, pp. 81–100, 1969.

    Google Scholar 

  4. Coelho, P. G., Granato, R., Marin, C., Teixeira, H. S., Suzuki, M., et al., “The Effect of Different Implant Macrogeometries and Surface Treatment in Early Biomechanical Fixation: an Experimental Study in Dogs,” Journal of the Mechanical Behavior of Biomedical Materials, Vol. 4, No. 8, pp. 1974–1981

  5. Chuang, S. K. and Cai, T., “Predicting Clustered Dental Implant Survival using Frailty Methods,” Journal of Dental Research, Vol. 85, No. 12, pp. 1147–1151, 2006.

    Article  Google Scholar 

  6. Levine, R. A., Clem, D., Beagle, J., Ganeles, J., Johnson, P., et al., “Multicenter Retrospective Analysis of the Solid-Screw ITI Implant for Posterior Single-Tooth Replacements,” The International Journal of Oral & Maxillofacial Implants, Vol. 17, No. 4, pp. 550–556, 2001.

    Google Scholar 

  7. Zupnik, J., Kim, S.-W., Ravens, D., Karimbux, N., and Guze, K., “Factors Associated with Dental Implant Survival: a 4-Year Retrospective Analysis,” Journal of Periodontology, Vol. 82, No. 10, pp. 1390–1395, 2011.

    Article  Google Scholar 

  8. Park, J. W., Park, K. B., and Suh, J. Y., “Effects of Calcium Ion Incorporation on Bone Healing Of Ti6Al4V Alloy Implants in Rabbit Tibiae,” Biomaterials, Vol. 28, No. 22, pp. 3306–3313, 2007.

    Article  Google Scholar 

  9. Le Guéhennec, L., Soueidan, A., Layrolle, P., and Amouriq, Y., “Surface Treatments of Titanium Dental Implants for Rapid Osseointegration,” Dental Materials, Vol. 23, No. 7, pp. 844–854, 2007.

    Article  Google Scholar 

  10. Stanford, C., Johnson, G., Fakhry, A., Gartton, D., Mellonig, J., and Wagner, W., “Outcomes of a Fluoride Modified Implant One Year after Loading in the Posterior-Maxilla when Placed with the Osteotome Surgical Technique,” Appl Osseointegration Res, Vol. 5, pp. 50–55, 2006.

    Google Scholar 

  11. Hayashi, K., Inadome, T., Mashima, T., and Sugioka, Y., “Comparison of Bone-Implant Interface Shear Strength of Solid Hydroxyapatite and Hydroxyapatite Coated Titanium Implants,” Journal of Biomedical Materials Research, Vol. 27, No. 5, pp. 557–563, 1993.

    Article  Google Scholar 

  12. Hanawa, T., Asami, K., and Asaoka, K., “Microdissolution of Calcium Ions from Calciumion-Implanted Titanium,” Corrosion Science, Vol. 38, No. 9, pp. 1579–1594, 1996.

    Article  Google Scholar 

  13. Rabiei, A., Thomas, B., Jin, C., Narayan, R., Cuomo, J., et al., “A Study on Functionally Graded HA Coatings Processed Using Ion Beam Assisted Deposition with in Situ Heat Treatment,” Surface and Coatings Technology, Vol. 200, No. 20, pp. 6111–6116, 2006.

    Article  Google Scholar 

  14. Kim, H. M., Miyaji, F., Kokubo, T., and Nakamura, T., “Bonding Strength of Bonelike Apatite Layer to Ti Metal Substrate,” Journal of Biomedical Materials Research, Vol. 38, No. 2, pp. 121–127, 1997.

    Article  Google Scholar 

  15. Lee, M. H., Park, I. S., Min, K. S., Ahn, S. G., Park, J. M., et al., “Evaluation of in Vitro and in Vivo Tests for Surface-Modified Titanium by H2SO4 and H2O2 Treatment,” Metals and Materials International, Vol. 13, No. 2, pp. 109–115, 2007.

    Article  Google Scholar 

  16. Lee, M. H., Yoon, D. J., Won, D. H., Bae, T. S., and Watari, F., “Biocompatibility of Surface Treated Pure Titanium and Titanium Alloy Byin Vivo Andin Vitro Test,” Metals and Materials International, Vol. 9, No. 1, pp. 35–42, 2003.

    Article  Google Scholar 

  17. Lee, I. G., Kim, Y. K., Park, I. S., Park, J. M., Lee, M. H., et al., “Influence of Electrolyte Temperature on Pure Titanium Modified by Electrochemical Treatment for Implant,” Surface and Interface Analysis, Vol. 40, No. 12, pp. 1538–1544, 2008.

    Article  Google Scholar 

  18. Lee, H., Lee, B. P., and Messersmith, P. B., “A Reversible Wet/Dry Adhesive Inspired by Mussels and Geckos,” Nature, Vol. 448, No. 7151, pp. 338–341, 2007.

    Article  Google Scholar 

  19. Waite, J. H., “Adhesion in Byssally Attached Bivalves,” Biological Reviews, Vol. 58, No. 2, pp. 209–231, 1983.

    Article  Google Scholar 

  20. Waite, J. H., “Nature’s Underwater Adhesive Specialist,” International Journal of Adhesion and Adhesives, Vol. 7, No. 1, pp. 9–14, 1987.

    Article  Google Scholar 

  21. Cha, H. J., Hwang, D. S., and Lim, S., “Development of Bioadhesives from Marine Mussels,” Biotechnology Journal, Vol. 3, No. 5, pp. 631–638, 2008.

    Article  Google Scholar 

  22. Ryu, J., Ku, S. H., Lee, H., and Park, C. B., “MusselInspired Polydopamine Coating as a Universal Route to Hydroxyapatite Crystallization,” Advanced Functional Materials, Vol. 20, No. 13, pp. 2132–2139, 2010.

    Article  Google Scholar 

  23. Berglundh, T. and Lindhe, J., “Healing around Implants Placed in Bone Defects Treated with Bio-Oss®. An Experimental Study in the Dog,” Clinical Oral Implants Research, Vol. 8, No. 2, pp. 117–124, 1997.

    Article  Google Scholar 

  24. Fei, B., Qian, B., Yang, Z., Wang, R., Liu, W., Mak, C., and Xin, J. H., “Coating Carbon Nanotubes by Spontaneous Oxidative Polymerization of Dopamine,” Carbon, Vol. 46, No. 13, pp. 1795–1797, 2008.

    Article  Google Scholar 

  25. Ku, S. H., Ryu, J., Hong, S. K., Lee, H., and Park, C. B., “General Functionalization Route for Cell Adhesion on Non-Wetting Surfaces,” Biomaterials, Vol. 31, No. 9, pp. 2535–2541, 2010.

    Article  Google Scholar 

  26. Park, I. S., Kim, J. J., Ahn, S. G., Lee, M. H., Seol, K. W., and Bae, T. S., “The Effect of Fluoride Treatment on Titanium Treated with Anodic Spark Oxidation,” Metals and Materials International, Vol. 13, No. 2, pp. 117–122, 2007.

    Article  Google Scholar 

  27. Bai, Y., Park, I. S., Park, H. H., Bae, T. S., and Lee, M. H., “Formation of Bioceramic Coatings Containing Hydroxyapatite on the Titanium Substrate by MicroArc Oxidation Coupled with Electrophoretic Deposition,” Journal of Biomedical Materials Research Part B: Applied Biomaterials, Vol. 95, No. 2, pp. 365–373, 2010.

    Article  Google Scholar 

  28. Ishizawa, H. and Ogino, M., “Formation and Characterization of Anodic Titanium Oxide Films Containing Ca and P,” Journal of Biomedical Materials Research, Vol. 29, No. 1, pp. 65–72, 1995.

    Article  Google Scholar 

  29. Gottlander, M. and Albrektsson, T., “Histomorphometric Studies of Hydroxylapatite-Coated and Uncoated CP Titanium Threaded Implants in Bone,” The International Journal of Oral & Maxillofacial Implants, Vol. 6, No. 4, pp. 399–404, 1990.

    Google Scholar 

  30. Webb, K., Hlady, V., and Tresco, P. A., “Relative Importance of Surface Wettability and Charged Functional Groups on NIH 3T3 Fibroblast Attachment, Spreading, and Cytoskeletal Organization,” Journal of Biomedical Materials Research, Vol. 41, No. 3, pp. 422, 1998.

    Article  Google Scholar 

  31. Ciapetti, G., Cenni, E., Pratelli, L., and Pizzoferrato, A., “In Vitro Evaluation of Cell/Biomaterial Interaction by MTT Assay,” Biomaterials, Vol. 14, No. 5, pp. 359–364, 1993.

    Article  Google Scholar 

  32. Kostoryz, E., Tong, P., Chappelow, C., Eick, J., Glaros, A., and Yourtee, D., “In Vitro Cytotoxicity of Solid Epoxy-based Dental Resins and their Components,” Dental Materials, Vol. 15, No. 5, pp. 363–373, 1999.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min-Ho Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, JJ., Park, IS., Shin, GS. et al. Effects of polydopamine coating on the bioactivity of titanium for dental implants. Int. J. Precis. Eng. Manuf. 15, 1647–1655 (2014). https://doi.org/10.1007/s12541-014-0515-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12541-014-0515-6

Keywords

Navigation