Skip to main content
Log in

Thermo-mechanical coupled analysis of automotive brake disc

  • Published:
International Journal of Precision Engineering and Manufacturing Aims and scope Submit manuscript

Abstract

This study aims to analysis the thermo-mechanical behavior at dry contact between disc and pad during braking phase by computer simulation. The geometric design model of disc analyzed at transient temperature to embody the ventilation system in vehicle. Deformation, Von Mises stress and contact pressures at pad are investigated by coupled thermo-mechanical. These simulation results are satisfactorily verified by comparing with similar literature result. Thus, this study provides effective reference for design and engineering application of brake disc and brake pad.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

a :

Deceleration of the vehicle [ms−2]

A d :

Disc surface swept by a brake pad [m2]

g :

Acceleration of gravity (9.81) [ms−2]

m :

Mass of the vehicle [kg]

q0 :

Entering heat flux [W]

v0 :

Initial speed of the vehicle [ms−1]

z=a/g:

Braking effectiveness

ɛp :

Factor load distribution on the disc surface

ϕ :

Rate distribution of the braking forces between the front and rear axle

References

  1. Bakar, A. R. A., Ouyang, H., Khai, L. C., and Abdullah, M. S., “Thermal Analysis of a Disc Brake Model Considering a Real Brake Pad Surface and Wear,” International Journal of Vehicle Structures & Systems, Vol. 2, No. 1, pp. 20–27, 2010.

    Google Scholar 

  2. Maleque, M. A., Adebisi, A. A., and Shah, Q. H., “Energy and Cost Analysis of Weight Reduction using Composite Brake Rotor,” International Journal of Vehicle Structures & Systems, Vol. 4, No. 2, pp. 69–73, 2012.

    Google Scholar 

  3. Lee, K. J. and Barber, J. R., “An Experimental Investigation of Frictionally-Excited Thermoelastic Instability in Automotive Disk Brakes Under a Drag Brake Application,” J. Tribol, Vol. 116, pp. 409–414, 1994.

    Article  Google Scholar 

  4. Altuzarra, O., Amezua, E., Aviles, R., and Hernandez, A., “Judder vibration in disc brakes excited by thermoelastic instability,” Eng. comput, Vol. 19, No. 4, pp. 411–430, 2002.

    Article  MATH  Google Scholar 

  5. Jang, Y. H. and Ahn, S. H., “Frictionally-excited thermoelastic instability in functionally graded material,” Wear, Vol. 262, pp. 1102–1112, 2007.

    Article  Google Scholar 

  6. Yi, B. Y., Barber, J. R., and Zagrodzki, P., “Eigenvalue solution of thermoelastic instability problems using Fourier reduction,” Proc. R. Soc. London, A, Vol. 456, pp. 2799–282, 2000.

    Article  MATH  Google Scholar 

  7. Nakatsuji, T., Okubo, K., Fujii, T., and Sasada, M., “Study on Crack Initiation at Small Holes of One-piece Brake Discs,” SAE Technical Paper, Vol. 66, No. 646, pp. 2016–2023, 2002.

    Google Scholar 

  8. Valvano, T. and Lee, K., “An Analytical Method to Predict Thermal Distortion of a Brake Rotor,” SAE Technical Paper, Vol. 109, No. 6, pp. 566–571, 2000.

    Google Scholar 

  9. Hudson, M. D. and Ruhl, R. L., “Ventilated Brake Rotor Air Flow Investigation,” SAE Technical Paper, Vol. 106, No. 6, pp. 1862–1871, 1997.

    Google Scholar 

  10. Denape, J. and Laraqi, N., “Aspect thermique du frottement: mise en évidence expérimentale et éléments de modélisation,” Mécanique & Industries, Vol. 1, No. 6, pp. 563–579., 2000.

    Article  Google Scholar 

  11. Hamraoui, M., “Thermal behaviour of rollers during the rolling process,” Applied Thermal Engineering, Vol. 29, No. 11–12, pp. 2386–2390, 2009.

    Article  Google Scholar 

  12. Hamraoui, M. and Zouaoui, Z., “Modelling of heat transfer between two rollers in dry friction,” Int. J. Therm. Sci., Vol. 48, No. 6, pp. 1243–1246, 2009.

    Article  Google Scholar 

  13. Laraqi, N., “Velocity and relative contact size effect on the thermal constriction resistance in sliding solids,” ASME J. Heat Transf., Vol. 119, pp. 173–177, 1997.

    Article  Google Scholar 

  14. Yapýcý, H., Genç, M. S., and Özýsýk, G., “Transient temperature and thermal stress distributions in a hollow disk subjected to a moving uniform heat source,” J. Therm. Stress., Vol. 31, pp. 476–493, 2008.

    Article  Google Scholar 

  15. Laraqi, N., Alilat, N., de Maria, J. M., and Baïri, A., “Temperature and division of heat in a pin-on-disc frictional device — Exact analytical solution,” Wear, Vol. 266, No. 7–8, pp. 765–770, 2009.

    Article  Google Scholar 

  16. Bauzin, J. G. and Laraqi, N., “Simultaneous estimation of frictional heat flux and two thermal contact parameters for sliding contacts,” Numerical Heat Transfer Part a-Applications, Vol. 45, No. 4, pp. 313–328, 2004.

    Article  Google Scholar 

  17. Baïri, A., J. M. Garcia de Maria, n., and Laraqi, N., “Effect of thickness and physical properties of film on the thermal behavior of moving rough interfaces,” The European Physical Journal — Applied Physics, Vol. 26, No. 1, pp. 29–34, 2004.

    Article  Google Scholar 

  18. Mijuca, D. M., iberna A. M., and Medjo B. I., “A new multifield finite element method in steady state heat analysis,” Therm. Sci. Vol. 9, No. 1, pp. 111–130, 2005.

    Article  Google Scholar 

  19. Gao, C. H. and Lin, X. Z., “Transient temperature field analysis of a brake in a non-axisymmetric threedimensional model,” J. Materials Processing Technology, Vol. 129, pp. 513–517, 2002.

    Article  Google Scholar 

  20. Talati, F. and Jalalifar, S, “Analysis of heat conduction in a disk brake system,” Heat and Mass Transfer, Vol. 45, No. 8, pp. 1047–1059, 2000.

    Article  Google Scholar 

  21. Naji, M., Al-Nimr, M., and Masoud, S., “Transient thermal behavior of a cylindrical brake system,” Heat and Mass Transfer, Vol. 36, No. 1, pp. 45–49, 2000.

    Article  Google Scholar 

  22. Mosleh, M., Blau, P. J., and Dumitrescu, D., “Characteristics and morphology of wear particles from laboratory testing of disk brake materials,” Wear, Vol. 256, No. 11–12, pp. 1128–1134, 2004.

    Article  Google Scholar 

  23. Mutlu, I., Alma, M. H., Basturk, M. A., and Oner, C., “Preparation and characterization of brake linings from modified tannin-phenol formaldehyde resin and asbestos-free fillers,” Journal of Materials Science, Vol. 40, No. 11, pp. 3003–3005, 2005.

    Article  Google Scholar 

  24. Hecht, R. L., Dinwiddie, R. B., and Wang, H., “The effect of graphite flake morphology on the thermal diffusivity of gray cast irons used for automotive brake discs,” Journal of Materials Science, Vol. 34, No. 19, pp. 4775–4781, 1999.

    Article  Google Scholar 

  25. Gudmand-Høyer, L., Bach, A., Nielsen, G. T., and Morgen, P., “Tribological properties of automotive disc brakes with solid lubricants,” Wear, Vol. 232, No. 2, pp. 168–175, 1999.

    Article  Google Scholar 

  26. Uyyuru, R. K., Surappa, M. K., and Brusethaug, S., “Tribological behavior of Al-Si-SiCp composites/automobile brake pad system under dry sliding conditions,” Tribology International, Vol. 40, No. 2, pp. 365–373, 2007.

    Article  Google Scholar 

  27. Cho, M. H., Cho, K. H., Kim, S. J., Kim, D. H., and Jang, H., ’The Role of Transfer Layers on Friction Characteristics in the Sliding Interface between Friction Materials against Gray Iron Brake Disks,” Tribology Letters, Vol. 20, No. 2, pp. 101–108, 2005.

    Article  Google Scholar 

  28. Boz, M. and Kurt, A., “The effect of Al2O3 on the friction performance of automotive brake friction materials,” Tribology International, Vol. 40, No. 7, pp. 1161–1169, 2007.

    Article  Google Scholar 

  29. Blau, P. J. and McLaughlin, J. C., “Effects of water films and sliding speed on the frictional behavior of truck disc brake material,” Tribology International, Vol. 36, No. 10, pp. 709–715, 2003.

    Article  Google Scholar 

  30. McPhee, A. D. and Johnson, D. A., “Experimental heat transfer and flow analysis of a vented brake rotor,” International Journal Thermal Sciences, Vol. 47, No. 4, pp. 458–467, 2008.

    Article  Google Scholar 

  31. Wallis, L., Leonardi, E., Milton, B., and Joseph, P., “Air flow and heat transfer in ventilated disk brake rotors with diamond and teardrop pillars,” Numerical Heat Transfer Part A: Applications, Vol. 41, No. 6–7, pp. 643–655, 2002.

    Article  Google Scholar 

  32. Johnson, D. A., Sperandei, B. A., and Gilbert, R., “Analysis of the Flow Through a Vented Automotive Brake Rotor,” Journal of Fluids Engineering, Vol. 125, No. 6, pp. 979–986, 2004.

    Article  Google Scholar 

  33. Kang, S. S. and Cho, S. K., “Thermal deformation and stress analysis of disk brakes by finite element method Journal of Mechanical Science and Technology,” Vol. 26, No. 7, pp. 2133–2137, 2012.

    Google Scholar 

  34. Thilak, V. M. M., Krishnaraj, R., Sakthivel, M., and Kanthavel, K., Deepan marudachalam, M. G., Palani, R., “Transient thermal and structural analysis of the rotor disc of disc brake,” International Journal of Scientific & Engineering Research, Vol. 2, No. 8, 2011.

    Google Scholar 

  35. Lee, S. and Yeo, T., “Temperature and coning analysis of brake rotor using an axisymmetric finite element technique,” Proc. 4th Korea-Russia Int. Symp. On Science & Technology, Vol. 3, pp. 17–22, 2000.

    Google Scholar 

  36. Ouyang, H., Abu-Bakar, A. R., and Li, L., “A combined analysis of heat conduction, contact pressure and transient vibration of a disc brake,” International Journal of Vehicle Design, Vol. 51, No. 1, pp. 190–206, 2009.

    Article  Google Scholar 

  37. Hassan, M. Z., Brooks, P. C., and Barton, D. C., “A predictive tool to evaluate disk brake squeal using a fully coupled thermomechanical finite element model,” International Journal of Vehicle Design, Vol. 51, No. 1, pp. 124–142, 2009.

    Article  Google Scholar 

  38. Sivarao, M., Amarnath, M. S., Rizal, A. K., “An Investigation Toward Development Of Economical Brake Lining Wear Alert System,” International Journal of Engineering & Technology, Vol. 9, No. 9, pp. 251–256, 2009.

    Google Scholar 

  39. Kuciej, M. and Grzes, P., “The comparable analysis of temperature distributions assessment in disc brake obtained using analytical method and fe model,” Journal of kones powertrain and transport, Vol. 18, No. 2, 2011.

    Google Scholar 

  40. Cho, C. and Ahn, S., “Thermo-elastic analysis for chattering phenomenon of automotive disk brake,” KSME International Journal, Vol. 15, No. 5, pp. 569–579, 2001.

    Google Scholar 

  41. Jung, S. P., Kim, Y. G., and Park, T. W., “A Study on thermal characteristic analysis and shape optimization of a ventilated disc,” Int. J. Precis. Eng. Manuf., Vol. 13, No. 1, pp. 57–63, 2012.

    Article  MathSciNet  Google Scholar 

  42. Jung, S. P., Park, T. W., Jun, K. J., Yoon, J. W., Lee, S. H., and Chung, W. S., “A Study on the Optimization Method for a Multibody System using the Response Surface Analysis,” Journal of Mechanical Science and Technology, Vol. 23, No. 4, pp. 950–953, 2009.

    Article  Google Scholar 

  43. Jung, S. P., Jun, K. J., Park, T. W., and Ahn, I. C., “An Optimum Design of a Gas Circuit Breaker Using Design of Experiments,” Mechanics Based Design of Structures and Machines, Vol. 36, No. 4, pp. 346–363, 2008.

    Article  Google Scholar 

  44. Jung, S. P., Park, T. W., Yoon, J. W., Jun, K. J., and Chung, W. S., “Design Optimization of Spring of a Locking Nut using Design of Experiments,” Int. J. Precis. Eng. Manuf., Vol. 10, No. 4, pp. 77–83, 2009.

    Article  Google Scholar 

  45. Jung, S. P., Park, T. W., and Chung, W. S., “Hot Judder Analysis of the Ventilated Disc Brake System of an Automotive,” Proc. KSME Autumn Conference, pp. 548–551, 2010.

    Google Scholar 

  46. Jung, S. P., Park, T. W., Chai, J. B., and Chung, W. S., “Thermomechanical finite element analysis of hot judder phenomenon of a ventilated disc brake system,” Int. J. Precis. Eng. Manuf., Vol. 12, No. 5, pp. 821–828, 2011.

    Article  Google Scholar 

  47. Zhang, L., Yang, Q., Weichert, D., and Tan, N., “Simulation and Analysis of Thermal Fatigue Based on Imperfection Model of Brake Discs,” PAMM, Vol. 9, No. 1, pp. 533–534, 2009.

    Article  Google Scholar 

  48. Cruceanu, C., Frâne pentru vehicule feroviare (Brakes for railway vehicles), Matrixrom, pp. 388, 2007.

    Google Scholar 

  49. Reimpel, J., “Technologie de freinage,” Vogel, 1998.

    Google Scholar 

  50. Gotowicki, P. F., Nigrelli, V., Mariotti, G. V., Aleksendric, D., and Duboka, C., “Numerical and experimental analysis of a pegs-wing ventilated disk brake rotor, with pads and cylinders,” 10th EAEC European Automotive Congress, 2005.

    Google Scholar 

  51. Versteeg, H. K. and Malalasekera, W., “An Introduction to Computational Fluid Mechanics: The Finite Volume Method,” Prentice Hall, 2nd Ed., 2007.

    Google Scholar 

  52. ANSYS, Ansys User Manual v.11, ANSYS, Inc., 1996.

    Google Scholar 

  53. Koetniyom, S., Brooks, P. C., and Barton, D. C., “The development of a material model for cast iron that can be used for brake system analysis,” Journal of Automobile Engineering, Vol. 216, No. 5, pp. 349–362, 2002.

    Article  Google Scholar 

  54. Nouby, M. and Srinivasan, K., “Parametric Studies of Disc Brake Squeal using Finite Element Approach,” Jurnal Mekanikal, No. 29, pp. 52–66, 2009.

    Google Scholar 

  55. AbuBaker, A. R. and Ouyang, H., “Wear prediction of friction material and brake squeal using the finite element method,” Wear, Vol. 264, No. 11–12, pp. 1069–1076, 2008.

    Article  Google Scholar 

  56. Tirovic, M. and Day, A. J., “Disc brake interface pressure distribution,” Journal of Automobile Engineering, Vol. 205, pp. 137–146, 1991.

    Article  Google Scholar 

  57. Ouyang, H., Cao, Q., Mottershead, J. E., and Treyde, T, “Vibration and squeal of a disc brake: modelling and experimental results,” Journal of Automotive Engineering, Vol. 217, pp. 867–875, 2003.

    Article  Google Scholar 

  58. Lee, Y. S., Brooks, P. C., Barton, D. C., and Crolla, D. A., “A predictive tool to evaluate disc brake squeal propensity Part 1: The model philosophy and the contact problem,” International Journal of Vehicle Design, Vol. 31, No. 289–308, 2003.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali-Belhocine.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ali-Belhocine, Mostefa-Bouchetara Thermo-mechanical coupled analysis of automotive brake disc. Int. J. Precis. Eng. Manuf. 14, 1591–1600 (2013). https://doi.org/10.1007/s12541-013-0215-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12541-013-0215-7

Keywords

Navigation