Effect of ligament stiffness on spinal loads and muscle forces in flexed positions

Abstract

Ligaments assist muscles in stabilizing the spine within physiological ranges of motion by limiting the displacements, but the role of ligaments in spinal loads and muscle force distribution remains unknown. The purpose of this study was to investigate the effect of different stiffness on joint resultant forces and muscle forces in different flexed positions. For this study, five ligament stiffness sets were determined from the literature and applied to a musculoskeletal spine model. The dimensions of the model were adjusted according to subjects in the in vivo experiments used for validation, and spinal loads and muscle forces were determined during flexed positions. The differences between the spinal loads due to different ligament stiffnesses were insignificant (maximum difference 12%). However, the different ligament stiffnesses showed a strong effect on individual muscle forces. Among the short muscles, lumbar multifidi exerted only 65 N without ligaments but the force increased up to 254 N due to adding the maximum ligament stiffness. However, the load in the erector spinae was significantly decreased (30%). The results of this study showed that in addition to long and superficial muscles, ligaments also played an important role in stabilizing the spine in flexed positions.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    White, A. A. and Panjabi, M. M., “Clinical Biomechanics of The Spine,” Lippincott Williams & Wilkins, 1990.

  2. 2.

    Schultz, A., Haderspeck-Grib, K., Sinkora, G., and Warwick, D., “Quantitative studies of the flexion-relaxation phenomenon in the back muscles,” J. Orthop. Res., Vol. 3, No. 2, pp. 189–197, 1985.

    Article  Google Scholar 

  3. 3.

    Oxland, T. R., Panjabi, M. M., Southern, E. P., and Duranceau, J. S., “An anatomic basis for spinal instability: a porcine trauma model,” J. Orthop. Res., Vol. 9, No. 3, pp. 452–462, 1991.

    Article  Google Scholar 

  4. 4.

    Ehara, S., Shimamura, T., Nakamura, R., and Yamazaki, K., “Paravertebral ligamentous ossification: DISH, OPLL and OLF,” Eur. J. Radiol., Vol. 27, No. 3, pp. 196–205, 1998.

    Article  Google Scholar 

  5. 5.

    Myklebust, J. B., Pintar, F., Yoganandan, N., Cusick, J. F., Maiman, D., Myers, T. J., and Sances, A., Jr., “Tensile strength of spinal ligaments,” Spine (Phila Pa 1976), Vol. 13, No. 5, pp. 526–531, 1988.

    Article  Google Scholar 

  6. 6.

    Nachemson, A. L. and Evans, J. H., “Some mechanical properties of the third human lumbar interlaminar ligament (ligamentum flavum),” J. Biomech., Vol. 1, No. 3, pp. 211–220, 1968.

    Article  Google Scholar 

  7. 7.

    Chazal, J., Tanguy, A., Bourges, M., Gaurel, G., Escande, G., Guillot, M., and Vanneuville, G., “Biomechanical properties of spinal ligaments and a histological study of the supraspinal ligament in traction,” J. Biomech., Vol. 18, No. 3, pp. 167–176, 1985.

    Article  Google Scholar 

  8. 8.

    Pintar, F. A., Yoganandan, N., Myers, T., Elhagediab, A., and Sances, A., Jr., “Biomechanical properties of human lumbar spine ligaments,” J. Biomech., Vol. 25, No. 11, pp. 1351–1356, 1992.

    Article  Google Scholar 

  9. 9.

    Nolte, L. P., Panjabi, M. M., and Oxland, T. R., “Biomechanical properties of lumbar spinal ligaments, in: Heimke, G., Soltesz, U., and Lee, A. J. C., (Eds.), Clinical Implant Materials,” Elsevier, Vol. 9, pp. 663–668, 1990.

  10. 10.

    Zander, T., Rohlmann, A., and Bergmann, G., “Analysis of simulated single ligament transection on the mechanical behaviour of a lumbar functional spinal unit,” Biomed Tech (Berl), Vol. 49, No. 1–2, pp. 27–32, 2004.

    Article  Google Scholar 

  11. 11.

    Shirazi-Adl, A., El-Rich, M., Pop, D. G., and Parnianpour, M., “Spinal muscle forces, internal loads and stability in standing under various postures and loads—application of kinematics-based algorithm,” Eur. Spine J., Vol. 14, No. 4, pp. 381–392, 2005.

    Article  Google Scholar 

  12. 12.

    Lee, S. H., Im, Y. J., Kim, K. T., Kim, Y. H., Park, W. M., and Kim, K., “Comparison of cervical spine biomechanics after fixed- and mobile-core artificial disc replacement: a finite element analysis,” Spine (Phila Pa 1976), Vol. 36, No. 9, pp. 700–708, 2011.

    Article  Google Scholar 

  13. 13.

    de Zee, M., Hansen, L., Wong, C., Rasmussen, J., and Simonsen, E. B., “A generic detailed rigid-body lumbar spine model,” J. Biomech., Vol. 40, No. 6, pp. 1219–1227, 2007.

    Article  Google Scholar 

  14. 14.

    McGill, S. M. and Norman, R. W., “Effects of an anatomically detailed erector spinae model on L4/L5 disc compression and shear,” J. Biomech., Vol. 20, No. 6, pp. 591–600, 1987.

    Article  Google Scholar 

  15. 15.

    Stokes, I. A. and Gardner-Morse, M., “Lumbar spine maximum efforts and muscle recruitment patterns predicted by a model with multijoint muscles and joints with stiffness,” J. Biomech., Vol. 28, No. 2, pp. 173–186, 1995.

    Article  Google Scholar 

  16. 16.

    Kim, K. and Kim, Y. H., “Role of trunk muscles in generating follower load in the lumbar spine of neutral standing posture,” J. Biomech. Eng., Vol. 130, No. 4, Paper No. 041005, 2008.

    Article  Google Scholar 

  17. 17.

    Goel, V. K., Monroe, B. T., Gilbertson, L. G., and Brinckmann, P., “Interlaminar shear stresses and laminae separation in a disc. Finite element analysis of the L3-L4 motion segment subjected to axial compressive loads,” Spine (Phila Pa 1976), Vol. 20, No. 6, pp. 689–698, 1995.

    Article  Google Scholar 

  18. 18.

    Neumann, P., Keller, T. S., Ekstrom, L., Perry, L., Hansson, T. H., and Spengler, D. M., “Mechanical properties of the human lumbar anterior longitudinal ligament,” J. Biomech., Vol. 25, No. 10, pp. 1185–1194, 1992.

    Article  Google Scholar 

  19. 19.

    Zander, T., Rohlmann, A., and Bergmann, G., “Influence of ligament stiffness on the mechanical behavior of a functional spinal unit,” J. Biomech., Vol. 37, No. 7, pp. 1107–1111, 2004.

    Article  Google Scholar 

  20. 20.

    Han, K. S., Zander, T., Taylor, W. R., and Rohlmann, A., “An enhanced and validated generic thoraco-lumbar spine model for prediction of muscle forces,” Med. Eng. Phys., Vol. 34, No. 6, pp. 709–716, 2011.

    Article  Google Scholar 

  21. 21.

    Winter, D. A., “Biomechanics and Motor Control of Human Movement,” John Wiley & Sons, 1990.

  22. 22.

    Wong, K. W., Luk, K. D., Leong, J. C., Wong, S. F., and Wong, K. K., “Continuous dynamic spinal motion analysis,” Spine, Vol. 31, No. 4, pp. 414–419, 2006.

    Article  Google Scholar 

  23. 23.

    Heuer, F., Schmidt, H., Klezl, Z., Claes, L., and Wilke, H. J., “Stepwise reduction of functional spinal structures increase range of motion and change lordosis angle,” J. Biomech., Vol. 40, No. 2, pp. 271–280, 2007.

    Article  Google Scholar 

  24. 24.

    Zhou, S. H., McCarthy, I. D., McGregor, A. H., Coombs, R. R., and Hughes, S. P., “Geometrical dimensions of the lower lumbar vertebrae—analysis of data from digitised CT images,” Eur. Spine J., Vol. 9, No. 3, pp. 242–248, 2000.

    Article  Google Scholar 

  25. 25.

    Zhu, Q., Larson, C. R., Sjovold, S. G., Rosler, D. M., Keynan, O., Wilson, D. R., Cripton, P. A., and Oxland, T. R., “Biomechanical evaluation of the Total Facet Arthroplasty System: 3-dimensional kinematics,” Spine (Phila Pa 1976), Vol. 32, No. 1, pp. 55–62, 2007.

    Article  Google Scholar 

  26. 26.

    Wilke, H., Neef, P., Hinz, B., Seidel, H., and Claes, L., “Intradiscal pressure together with anthropometric data—a data set for the validation of models,” Clin. Biomech. (Bristol, Avon), Vol. 16,Suppl. 1, pp. S111–126, 2001.

    Article  Google Scholar 

  27. 27.

    Cholewicki, J., McGill, S. M., and Norman, R. W., “Comparison of muscle forces and joint load from an optimization and EMG assisted lumbar spine model: towards development of a hybrid approach,” J. Biomech., Vol. 28, No. 3, pp. 321–331, 1995.

    Article  Google Scholar 

  28. 28.

    Rohlmann, A., Zander, T., Schmidt, H., Wilke, H. J., and Bergmann, G., “Analysis of the influence of disc degeneration on the mechanical behaviour of a lumbar motion segment using the finite element method,” J. Biomech., Vol. 39, No. 13, pp. 2484–2490, 2006.

    Article  Google Scholar 

  29. 29.

    Schmidt, H., Heuer, F., Claes, L., and Wilke, H. J., “The relation between the instantaneous center of rotation and facet joint forces — A finite element analysis,” Clin. Biomech. (Bristol, Avon), Vol. 23, No. 3, pp. 270–278, 2008.

    Article  Google Scholar 

  30. 30.

    Zander, T., Krishnakanth, P., Bergmann, G., and Rohlmann, A., “Diurnal variations in intervertebral disc height affect spine flexibility, intradiscal pressure and contact compressive forces in the facet joints,” Comput. Methods Biomech. Biomed. Engin., Vol. 13, No. 5, pp. 551–557, 2010.

    Article  Google Scholar 

  31. 31.

    Brinckmann, P. and Grootenboer, H., “Change of disc height, radial disc bulge, and intradiscal pressure from discectomy. An in vitro investigation on human lumbar discs,” Spine (Phila Pa 1976), Vol. 16, No. 6, pp. 641–646, 1991.

    Article  Google Scholar 

  32. 32.

    Rasmussen, J., Damsgaard, M., and Voigt, M., “Muscle recruitment by the min/max criterion — a comparative numerical study,” J. Biomech., Vol. 34, pp. 409–415, 2001.

    Article  Google Scholar 

  33. 33.

    Adams, M. A., McNally, D. S., and Dolan, P., “Stress distributions inside interverte-bral discs: the effects of age and degeneration,” J. Bone Joint Surg., Vol. 78, pp. 965–972, 1996.

    Article  Google Scholar 

  34. 34.

    Marras, W. S., Davis, K. G., Ferguson, S. A., Lucas, B. R., and Gupta, P., “Spine loading characteristics of patients with low back pain compared with asymptomatic individuals,” Spine, Vol. 26, No. 23, pp. 2566–2574, 2001.

    Article  Google Scholar 

  35. 35.

    Choi, H. W. and Kim, Y. E., “Contribution of paraspinal muscle and passive elements of the spine to the mechanical stability of the lumbar spine,” Int. J. Precis. Eng. Manuf., Vol. 13, No. 6, pp. 993–1002, 2012.

    MathSciNet  Article  Google Scholar 

  36. 36.

    Park, S. Y., Lee, S. Y., Kang, H. C., and Kim, S. M., “EMG analysis of lower limb muscle activation pattern during pedaling: Experiments and computer simulations,” Int. J. Precis. Eng. Manuf., Vol. 13, No. 4, pp. 601–608, 2012.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yoon Hyuk Kim.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Han, K., Rohlmann, A., Kim, K. et al. Effect of ligament stiffness on spinal loads and muscle forces in flexed positions. Int. J. Precis. Eng. Manuf. 13, 2233–2238 (2012). https://doi.org/10.1007/s12541-012-0296-8

Download citation

Keywords

  • Lumbar Spine
  • Spinal load
  • Musculoskeletal system
  • Ligament
  • Muscle force
  • Biomechanics