Skip to main content
Log in

Design concept of high-performance flexible tactile sensors with a robust structure

  • Published:
International Journal of Precision Engineering and Manufacturing Aims and scope Submit manuscript

Abstract

We introduce a new concept of a flexible tactile sensor array capable of sensing contact force and position with high performance and high spatial resolution. The proposed sensor array consists of a sub-millimetre-size bar-shaped semi-conductor strain gage array attached to a thin and flexible printed circuit board covered by stretchable elastomeric material on both sides. This design incorporates the benefits of both materials, the semiconductors’ high performance and the polymer’s mechanical flexibility and robustness, while overcoming the drawbacks of those two materials. For this paper, we have tested the feasibility of using this concept to develop high performance flexible tactile sensors; we fabricated a 5 × 5 sensor array of tactile sensors with commercial semiconductor strain gages. Each sensor element shows the good performances in terms of resolution better than 0.4 kPa, repeatability less than 1%, hysteresis less than 3%, zero return error less than 1%, and no observable drift over time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aldhous, P., “Reaching for the next generation of prosthetic arms,” New Sci., Vol. 190, No. 2553, pp. 28–29, 2006.

    Article  Google Scholar 

  2. Rosenwald, M., “A lifelike prosthetic arm,” Technol. Rev., Vol. 112, No. 3, pp. 76–77, 2009.

    Google Scholar 

  3. Dahiya, R. S., Metta, G., Valle, M., and Sandini, G., “Tactile sensingfrom humans to humanoids,” IEEE T. Robot., Vol. 26, No. 1, pp. 1–20, 2010.

    Article  Google Scholar 

  4. Maheshwari, V. and Saraf, R., “Tactile devices to sense touch on a par with a human finger,” Angew. Chem. Int. Ed., Vol. 47, No. 41, pp. 7808–7826, 2008.

    Article  Google Scholar 

  5. Schostek, S., Ho, C. N., Kalanovic, D., and Schurr, M. O., “Artificial tactile sensing in minimally invasive surgery — A new technical approach,” Minimal. Invasiv. Ther., Vol. 15, No. 5, pp. 296–304, 2006.

    Article  Google Scholar 

  6. Yousef, H., Boukallel, M., and Althoefer, K., “Tactile sensing for dexterous in-hand manipulation in robotics — A review,” Sensor Actuat. A-Phys., Vol. 167, No. 2, pp. 171–187, 2011.

    Article  Google Scholar 

  7. Phung, T. C., Ihn, Y. S., Koo, J. C., and Choi, H. R., “Edge identification of a small object through a low-resolution tactile sensor array,” Int. J. Precis. Eng. Manuf., Vol. 11, No. 2, pp. 247–254, 2010.

    Article  Google Scholar 

  8. Kim, E.-H., Lee, S.-W., and Lee, Y.-K., “A dexterous robot hand with a bio-mimetic mechanism,” Int. J. Precis. Eng. Manuf., Vol. 12, No. 2, pp. 227–235, 2011.

    Article  Google Scholar 

  9. Gellis, M. and Pool, R., “Two point discrimination distances in the normal hand and forearm: application to various methods of fingertip reconstruction,” Plast. Reconstr. Surg., Vol. 59, No. 1, pp. 57–63, 1977.

    Article  Google Scholar 

  10. Johnson, K. O. and Phillips, J. R., “Tactile spatial resolution. I. Two-point discrimination, gap detection, grating resolution, and letter recognition,” J. Neurophysiol., Vol. 46, No. 6, pp. 1177–1191, 1981.

    Google Scholar 

  11. Ádám, M., Mohácsy, T., Jónás, P., Dücso, C., Vázsonyi, E., and Bársony, I., “CMOS integrated tactile sensor array by porous Si bulk micromachining,” Sensor Actuat. A-Phys., Vol. 142, No. 1, pp. 192–195, 2008.

    Article  Google Scholar 

  12. Kane, B. J., Cutkosky, M. R., and Kovacs, G. T. A., “CMOScompatible traction stress sensor for use in high-resolution tactile imaging,” Sensor Actuat. A-Phys., Vol. 54, No. 1–3, pp. 511–516, 1996.

    Article  Google Scholar 

  13. Mei, T., Li, W. J., Ge, Y., Chen, Y., Ni, L., and Chan, M. H., “Integrated MEMS three-dimensional tactile sensor with large force range,” Sensor Actuat. A-Phys., Vol. 80, No. 2, pp. 155–162, 2000.

    Article  Google Scholar 

  14. Engel, J., Chen, J., Fan, Z., and Liu, C., “Polymer micromachined multimodal tactile sensors,” Sensor Actuat. A-Phys., Vol. 117, No. 1, pp. 50–61, 2005.

    Article  Google Scholar 

  15. Hwang, E. S., Seo, J. H., and Kim, Y. J., “A polymer-based flexible tactile sensor for both normal and shear load detections and its application for robotics,” J. Microelectromech. S., Vol. 16, No. 3, pp. 556–563, 2007.

    Article  Google Scholar 

  16. Kim, K., Lee, K. R., Kim, W. H., Park, K. B., Kim, T. H., Kim, J. S., and Park, J. J., “Polymer-based flexible tactile sensor up to 32 × 32 arrays integrated with interconnection terminals,” Sensor Actuat. A-Phys., Vol. 156, No. 2, pp. 284–291, 2009.

    Article  Google Scholar 

  17. Kwon, H.-J. and Choi, W.-C., “Design and fabrication of a flexible three-axial tactile sensor array based on polyimide micromachining,” Microsyst. Technol., Vol. 16, No. 12, pp. 2029–2035, 2010.

    Article  Google Scholar 

  18. Castellanos-Ramos, J., Navas-González, R., Macicior, H., Ochoteco, E., and Vidal-Verdú, F., “Tactile sensors based on conductive polymers,” Microsyst. Technol., Vol. 16, No. 5, pp. 765–776, 2010.

    Article  Google Scholar 

  19. Shimojo, M., Namiki, A., Ishikawa, M., Makino, R., and Mabuchi, K., “A tactile sensor sheet using pressure conductive rubber with electrical-wires stitched method,” IEEE Sens. J., Vol. 4, No. 5, pp. 589–596, 2004.

    Article  Google Scholar 

  20. Someya, T., Kato, Y., Sekitani, T., Iba, S., Noguchi, Y., Murase, Y., Kawaguchi, H., and Sakurai, T., “Conformable, flexible, large-area networks of pressure and thermal sensors with organic transistor active matrixes,” P. Natl. Acad. Sci. USA, Vol. 102, No. 35, pp. 12321–12325, 2005.

    Article  Google Scholar 

  21. Someya, T., Sekitani, T., Iba, S., Kato, Y., Kawaguchi, H., and Sakurai, T., “A large-area, flexible pressure sensor matrix with organic field-effect transistors for artificial skin applications,” P. Natl. Acad. Sci. USA, Vol. 101, No. 27, pp. 9966–9970, 2004.

    Article  Google Scholar 

  22. Bloor, D., Graham, A., Williams, E. J., Laughlin, P. J., and Lussey, D., “Metal-polymer composite with nanostructured filler particles and amplified physical properties,” Appl. Phys. Lett., Vol. 88, No. 10, pp. 102–103, 2006.

    Article  Google Scholar 

  23. Choi, B., Choi, H. R., and Kang, S., “Development of tactile sensor for detecting contact force and slip,” IEEE IRS/RSJ International Conference on Intelligent Robots and Systems, IROS 2005, pp. 1977–1982, 2005.

  24. Choi, B., Lee, S., Choi, H. R., and Kang, S., “Development of anthropomorphic robot hand with tactile sensor: SKKU hand II,” IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2006, pp. 3779–3784, 2006.

    Google Scholar 

  25. Ashruf, C. M. A., “Thin flexible pressure sensors,” Sensor Rev., Vol. 22, No. 4, pp. 322–327, 2002.

    Article  Google Scholar 

  26. Hwang, E. S., Kim, Y. J., and Ju, B. K., “Flexible polysilicon sensor array modules using’ etch-release’ packaging scheme,” Sensor Actuat. A-Phys., Vol. 111, No. 1, pp. 135–141, 2004.

    Article  Google Scholar 

  27. Katragadda, R. B. and Xu, Y., “A novel intelligent textile technology based on silicon flexible skins,” Sensor Actuat. A-Phys., Vol. 143, No. 1, pp. 169–174, 2008.

    Article  Google Scholar 

  28. Xu, Y., Jiang, F., Newbern, S., Huang, A., Ho, C. M., and Tai, Y. C., “Flexible shear-stress sensor skin and its application to unmanned aerial vehicles,” Sensor Actuat. A-Phys., Vol. 105, No. 3, pp. 321–329, 2003.

    Article  Google Scholar 

  29. Kim, D. H., Ahn, J. H., Won, M. C., Kim, H. S., Kim, T. H., Song, J., Huang, Y. Y., Liu, Z., Lu, C., and Rogers, J. A., “Stretchable and foldable silicon integrated circuits,” Science, Vol. 320, No. 5875, pp. 507–511, 2008.

    Article  Google Scholar 

  30. Hoffmann, K., “An introduction to measurements using strain gages,” Hottinger Baldwin Messtechnik GmbH, pp. 14–15, 1989.

  31. Kanda, Y., “A graphical representation of the piezoresistance coefficients in silicon,” IEEE Transactions on Electron Devices, Vol. 29, No. 1, pp. 64–70, 1982.

    Article  Google Scholar 

  32. Ahn, J. H., Kim, H. S., Menard, E., Lee, K. J., Zhu, Z., Kim, D. H., Nuzzo, R. G., Rogers, J. A., Amlani, I., Kushner, V., Thomas, S. G., and Duenas, T., “Bendable integrated circuits on plastic substrates by use of printed ribbons of single-crystalline silicon,” Appl. Phys. Lett., Vol. 90, No. 21, Paper No. 213501, 2007.

    Article  Google Scholar 

  33. Khang, D. Y., Jiang, H., Huang, Y., and Rogers, J. A., “A stretchable form of single-crystal silicon for high-performance electronics on rubber subtrates,” Science, Vol. 311, No. 5758, pp. 208–212, 2006.

    Article  Google Scholar 

  34. Meitl, M. A., Zhu, Z. T., Kumar, V., Lee, K. J., Feng, X., Huang, Y. Y., Adesida, I., Nuzzo, R. G., and Rogers, J. A., “Transfer printing by kinetic control of adhesion to an elastomeric stamp,” Nat. Mater., Vol. 5, No. 1, pp. 33–38, 2006.

    Article  Google Scholar 

  35. Sun, Y. and Rogers, J. A., “Fabricating semiconductor nano/microwires and transfer printing ordered arrays of them onto plastic substrates,” Nano Lett., Vol. 4, No. 10, pp. 1953–1959, 2004.

    Article  Google Scholar 

  36. Sun, Y. and Rogers, J. A., “Inorganic semiconductors for flexible electronics,” Adv. Mater., Vol. 19, No. 15, pp. 1897–1916, 2007.

    Article  Google Scholar 

  37. Fearing, R. S. and Binford, T. O., “Using a cylindrical tactile sensor for determining curvature,” IEEE T. Robot., Vol. 7, No. 6, pp. 806–817, 1991.

    Article  Google Scholar 

  38. Zhang, Y. and Miki, N., “Sensitivity enhancement of a micro-scale biomimetic tactile sensor with epidermal ridges,” J. Micromech. Microeng., Vol. 20, No. 8, Paper No. 085012, 2010.

    Google Scholar 

  39. Hillis, W. D., “High-resolution imaging touch sensor,” Int. J. Robot. Res., Vol. 1, No. 2, pp. 33–44, 1982.

    Article  Google Scholar 

  40. Liu, H., Zhang, Y. F., Liu, Y. W., and Jin, M. H., “Measurement errors in the scanning of resistive sensor arrays,” Sensor Actuat. APhys., Vol. 163, No. 1, pp. 198–204, 2010.

    Article  Google Scholar 

  41. Kim, T. K., Kim, J. K., and Jeong, O. C., “Measurement of nonlinear mechanical properties of PDMS elastomer,” Microelectron. Eng., Vol. 88, No. 8, pp. 1982–1985, 2011.

    Article  Google Scholar 

  42. Ko, H. C., Shin, G., Wang, S., Stoykovich, M, P., Lee, J. W., Kim, D. H., Ha, J. S., Huang, Y., Hwang, K. C., and Rogers, J. A., “Curvilinear electronics formed using silicon membrane circuits and elastomeric transfer elements,” Small, Vol. 5, No. 23, pp. 2703–2709, 2009.

    Article  Google Scholar 

  43. Ko, H. C., Stoykovich, M. P., Song, J., Malyarchuk, V., Choi, W. M., Yu, C. J., Geddes Iii, J. B., Xiao, J., Wang, S., Huang, Y., and Rogers, J. A., “A hemispherical electronic eye camera based on compressible silicon optoelectronics,” Nature, Vol. 454, No. 7205, pp. 748–753, 2008.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min-Seok Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, MS., Shin, HJ. & Park, YK. Design concept of high-performance flexible tactile sensors with a robust structure. Int. J. Precis. Eng. Manuf. 13, 1941–1947 (2012). https://doi.org/10.1007/s12541-012-0256-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12541-012-0256-3

Keywords

Navigation