Skip to main content
Log in

Ab-initio study of silicon and tin as a negative electrode materials for lithium-ion batteries

  • Published:
International Journal of Precision Engineering and Manufacturing Aims and scope Submit manuscript

Abstract

An investigation of Li-M (M: Si, Sn) components using density functional theory (DFT) is presented. Calculation of total energy, structural optimizations, bulk modulus and elastic constants with Li-Sn, Li-Si are performed through DFT calculations. From the comparable study of Li-Sn and Li-Si, it is found that silicon experience drastic mechanical degradation during lithiation than tin-based Li-Sn components. With increasing lithium net charge transfer to metals, the filling of anti-bonding orbital makes M-M covalent bonding weak ionic bonding in both Li-Si and Li-Sn. However, the difference of change of mechanical degradation during lithiation in Li-Si and Li-Sn results from the sensitivity of transition of covalent bonding. We check this from sharp decreasing of yield stress in Li-Si case. Furthermore, we simply make up amorphous Si cell with an additional Li atom at the center of the largest void to simulate the lithiation of amorphous silicon. Volume expansion of amorphous silicon cell agrees with the experiment observation and theoretical data of Li-Si compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

E(V,e):

total energy of the system

Cijkl :

elastic stiffness tensor

eij :

deformation applied strain

Y:

Young’s modulus

K:

Bulk modulus

G:

Shear modulus

v:

Poisson’s ratio

References

  1. Tarascon, J. M. and Armand, M., “Issues and challenges facing rechargeable lithium batteries,” Nature, Vol. 414, No. 6861, pp. 359–367, 2001.

    Article  Google Scholar 

  2. Park, C. M., Kim, J. H., Kim, H., and Sohn, H. J., “Li-alloy based anode materials for li secondary batteries,” Chem. Soc. Rev., Vol. 39, No. 8, pp. 3115–3141, 2010.

    Article  Google Scholar 

  3. Golmon, S., Maute, K., Lee, S. H., and Dunn, M. L., “Stress generation in silicon particles during lithium insertion,” Appl. Phys. Lett., Vol. 97, No. 3, Paper No. 033111, 2010.

  4. Key, B., Bhattacharyya, R., Morcrette, M., Seznec, V., Tarascon, J. M., and Grey, C. P., “Real-time nmr investigations of structural changes in silicon electrodes for lithium-ion batteries,” J. Am. Chem. Soc., Vol. 131, No. 26, pp. 9239–9249, 2009.

    Article  Google Scholar 

  5. Chevrier, V. L., Zwanziger, J. W., and Dahn, J. R., “First principles study of li-si crystalline phases: Charge transfer, electronic structure, and lattice vibrations,” Journal of Alloys and Compounds, Vol. 496, No. 1–2, pp. 25–36, 2010.

    Article  Google Scholar 

  6. Stearns, L. A., Gryko, J., Diefenbacher, J., Ramachandran, G. K., and Mcmillan, P. F., “Lithium monosilicide (lisi), a lowdimensional silicon-based material prepared by high pressure synthesis: Nmr and vibrational spectroscopy and electrical properties characterization,” J. Solid State Chem., Vol. 173, No. 1, pp. 251–258, 2003.

    Article  Google Scholar 

  7. Limthongkul, P., Jang, Y. I., Dudney, N. J., and Chiang, Y. M., “Electrochemically-driven solid-state amorphization in lithiummetal anodes,” J. Power Sources, Vol. 119, pp. 604–609, 2003.

    Article  Google Scholar 

  8. Kubota, Y., Escano, M. C. S., Nakanishi, H., and Kasai, H., “Crystal and electronic structure of li15si4,” J. Appl. Phys., Vol. 102, No. 5, Paper No. 053704, 2007.

  9. Obrovac, M. N. and Christensen, L., “Structural changes in silicon anodes during lithium insertion/extraction,” Electrochem. Solid St., Vol. 7, No. 5, pp. A93–A96, 2004.

    Article  Google Scholar 

  10. Kang, K., Lee, H. S., Han, D. W., Kim, G. S., Lee, D., Lee, G., Kang, Y. M., and Jo, M. H., “Maximum Li storage in Si nanowires for the high capacity three-dimensional Li-ion battery,” Appl. Phys. Lett., Vol. 96, No. 5, Paper No. 053110, 2010.

  11. Chan, T.-L. and Chelikowsky, J. R., “Controlling diffusion of lithium in silicon nanostructures,” Nano Letters, Vol. 10, No. 3, pp. 821–825, 2010.

    Article  Google Scholar 

  12. Deshpande, R., Cheng, Y. T., and Verbrugge, M. W., “Modeling diffusion-induced stress in nanowire electrode structures,” J. Power Sources, Vol. 195, No. 15, pp. 5081–5088, 2010.

    Article  Google Scholar 

  13. Gao, Y. F. and Zhou, M., “Strong stress-enhanced diffusion in amorphous lithium alloy nanowire electrodes,” J. Appl. Phys., Vol. 109, No. 1, Paper No. 014310, 2011.

  14. Liu, X. H., Zheng, H., Zhong, L., Huang, S., Karki, K., Zhang, L. Q., Liu, Y., Kushima, A., Liang, W. T., Wang, J. W., Cho, J.-H., Epstein, E., Dayeh, S. A., Picraux, S. T., Zhu, T., Li, J., Sullivan, J. P., Cumings, J., Wang, C., Mao, S., Ye, Z. Z., Zhang, S., and Huang, J. Y., “Anisotropic swelling and fracture of silicon nanowires during lithiation,” Nano Letters, Vol. 11, No. 8, pp. 3312–3318, 2011.

    Article  Google Scholar 

  15. Zhao, K. J., Pharr, M., Cai, S. Q., Vlassak, J. J., and Suo, Z. G., “Large plastic deformation in high-capacity lithium-ion batteries caused by charge and discharge,” J. Am. Ceram. Soc., Vol. 94, No. 28712, pp. S226–S235, 2011.

    Article  Google Scholar 

  16. Chevrier, V. L., Zwanziger, J. W., and Dahn, J. R., “First principles studies of silicon as a negative electrode material for lithium-ion batteries,” Can. J. Phys., Vol. 87, No. 6, pp. 625–632, 2009.

    Article  Google Scholar 

  17. Shenoy, V. B., Johari, P., and Qi, Y., “Elastic softening of amorphous and crystalline li-si phases with increasing li concentration: A first-principles study,” J. Power Sources, Vol. 195, No. 19, pp. 6825–6830, 2010.

    Article  Google Scholar 

  18. Kim, H., Chou, C. Y., Ekerdt, J. G., and Hwang, G. S., “Structure and properties of li-si alloys: A first-principles study,” J. Phys. Chem. C, Vol. 115, No. 5, pp. 2514–2521, 2011.

    Article  Google Scholar 

  19. Winter, M. and Besenhard, J. O., “Electrochemical lithiation of tin and tin-based intermetallics and composites,” Electrochim. Acta, Vol. 45, No. 1–2, pp. 31–50, 1999.

    Article  Google Scholar 

  20. Sangster, J. and Bale, C. W., “The li-sn (lithium-tin) system,” J. Phase Equilib., Vol. 19, No. 1, pp. 70–75, 1998.

    Article  Google Scholar 

  21. Courtney, I. A., Tse, J. S., Mao, O., Hafner, J., and Dahn, J. R., “Ab initio calculation of the lithium-tin voltage profile,” Physical Review B, Vol. 58, No. 23, pp. 15583–15588, 1998.

    Article  Google Scholar 

  22. Stournara, M. E., Guduru, P. R., and Shenoy, V. B., “Elastic behavior of crystalline li-sn phases with increasing li concentration,” J. Power Sources, Vol. 208, pp. 165–169, 2012.

    Article  Google Scholar 

  23. Blochl, P. E., “Projector augmented-wave method,” Physical Review B, Vol. 50, No. 24, pp. 17953–17979, 1994.

    Article  Google Scholar 

  24. Kresse, G. and Furthmuller, J., “Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set,” Physical Review B, Vol. 54, No. 16, pp. 11169–11186, 1996.

    Article  Google Scholar 

  25. Chung, D. H. and Buessem, W. R., “The Voigt-Reuss-Hill (VRH) Approximation and Elastic Moduli of Polycrystalline ZnO, TiO2 (Rutile), and α-Al2O3,” J. Appl. Phys., Vol. 39, No. 6, pp. 2777–2782, 1968.

    Article  Google Scholar 

  26. Wortman, J. J. and Evans, R. A., “Young’s modulus, shear modulus, and poisson’s ratio in silicon and germanium,” J. Appl. Phys., Vol. 36, No. 1, pp. 153–156, 1965.

    Article  Google Scholar 

  27. Kluge, M. D., Ray, J. R., and Rahman, A., “Molecular dynamic calculation of elastic-constants of silicon,” J. Chem. Phys., Vol. 85, No. 7, pp. 4028–4031, 1986.

    Article  Google Scholar 

  28. Kluge, M. D. and Ray, J. R., “Elastic-constants and density of states of a molecular-dynamics model of amorphous-silicon,” Physical Review B, Vol. 37, No. 8, pp. 4132–4136, 1988.

    Article  Google Scholar 

  29. Chou, C. Y., Kim, H., and Hwang, G. S., “A comparative firstprinciples study of the structure, energetics, and properties of lim (m = si, ge, sn) alloys,” J. Phys. Chem. C, Vol. 115, No. 40, pp. 20018–20026, 2011.

    Article  Google Scholar 

  30. Lee, S. S., Heo, D. E., and Lee, J. K., “Modified damage initiation criterion for the cohesive boundary element,” Int. J. Precis. Eng. Manuf., Vol. 11, No. 4, pp. 577–581, 2010.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maenghyo Cho.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moon, J., Cho, K. & Cho, M. Ab-initio study of silicon and tin as a negative electrode materials for lithium-ion batteries. Int. J. Precis. Eng. Manuf. 13, 1191–1197 (2012). https://doi.org/10.1007/s12541-012-0158-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12541-012-0158-4

Keywords

Navigation