Sub-micro to nanometer scale laser direct writing techniques with a contact probe

  • Howon Jung
  • Yongwoo Kim
  • Seok Kim
  • Jinhee Jang
  • Jae Won Hahn


Modern laser direct writing techniques provide tools for high-precision fabrication and manufacturing at the micro scale. As the integration of devices increases, the feature size is being reduced to the nanometer scale. In this paper, we developed a contact-probe-based laser direct writing technique that covers the sub-micro to nanometer scale. The proposed probe uses a solid immersion lens or a nano-aperture to enhance the resolution in a near-field writing method. We integrated several of the proposed probes with a conventional laser direct writing system and achieved pattern resolutions up to 35 nm with a 405 nm wavelength laser. Furthermore, the scanning speed (∼ 10 mm/s) of the probes was high enough to use it in actual industry fabrication processes. With the proposed probe-based system, electronic, photonic, or plasmonic devices that require sub-micro meter scale features can be fabricated by means of laser direct writing. The minimum width of the line pattern recorded with the plasmonic device was 35nm.


Laser direct writing Nano-aperture Near-field recording Solid immersion lens Surface plasmon polariton 



wavelength of laser


numerical aperture of optics


Full Width Half Maximum


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chen, M.-F., Chen, Y.-P., Hsiao, W.-T. and Gu, Z.-P., “Laser direct write patterning technique of indium tin oxide film,” Thin Solid Films, Vol. 515, No. 24, pp. 8515–8518, 2007.CrossRefGoogle Scholar
  2. 2.
    Hon, K. K. B., Li, L. and Hutchings, I. M., “Direct writing technology-Advances and developments,” CIRP Annals-Manufacturing Technology, Vol. 57, No. 2, pp. 601–620, 2008.CrossRefGoogle Scholar
  3. 3.
    Hayden, C. J. and Dalton, C., “Direct patterning of microelectrode arrays using femtosecond laser micromachining,” Appl. Surf. Sci., Vol. 256, No. 12, pp. 3761–3766, 2010.CrossRefGoogle Scholar
  4. 4.
    Kim, M.-S., Chu, W.-S., Kim, Y.-M., Avila, A. P. G. and Ahn, S.-H., “Direct metal printing of 3D Electrical Circuit using Rapid Prototyping,” Int. J. Precis. Eng. Manuf., Vol. 10, No. 5, pp. 147–150, 2009.CrossRefGoogle Scholar
  5. 5.
    Heidelberg Instruments Mikrotechnik GmbH, “DWL 66FS,”
  6. 6.
    Cumpston, B. H., Ananthavel, S. P., Barlow, S., Dyer, D. L., Ehrlich, J. E., Erskine, L. L., Heikal, A. A., Kuebler, S. M., Lee, I.-Y. S., McCord-Maughon, D., Qin, J., Röckel, H., Rumi, M., Wu, X.-L., Marder, S. R. and Perry, J. W., “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature, Vol. 398, No. 6722, pp. 51–54, 1999.CrossRefGoogle Scholar
  7. 7.
    Sun, H.-B., Kawakami, T., Xu, Y., Ye, J.-Y., Matuso, S., Misawa, H., Miwa, M. and Kaneko, R., “Real three-dimensional microstructures fabricated by photopolymerization of resins through two-photon absorption,” Opt. Lett., Vol. 25, No. 15, pp. 1110–1112, 2000.CrossRefGoogle Scholar
  8. 8.
    Haske, W., Chen, V. W., Hales, J. M., Dong, W., Barlow, S., Marder, S. R. and Perry, J. W., “65 nm feature sizes using visible wavelength 3-D multiphoton lithography,” Opt. Express, Vol. 15, No. 6, pp. 3426–3436, 2007.CrossRefGoogle Scholar
  9. 9.
    Maruo, S., Nakamura, O. and Kawata, S., “Three-dimensional microfabrication with two-photon-absorbed photopolymerization,” Opt. Lett., Vol. 22, No. 2, pp. 132–134, 1997.CrossRefGoogle Scholar
  10. 10.
    Li, L. and Fourkas, J. T., “Multiphoton polymerization,” Mater. Today, Vol. 10, No. 6, pp. 30–37, 2007.CrossRefGoogle Scholar
  11. 11.
    Willig, K. I., Rizzoli, S. O., Westphal, V., Jahn, R. and Hell, S. W., “STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis,” Nature, Vol. 440, No. 7086, pp. 935–939, 2006.CrossRefGoogle Scholar
  12. 12.
    Willig, K. I., Harke, B., Medda, R. and Hell, S. W., “STED microscopy with continuous wave beams,” Nat. Methods, Vol. 4, No. 11, pp. 915–918, 2007.CrossRefGoogle Scholar
  13. 13.
    Harke, B., Keller, J., Ullal, C. K., Westphal, V., Schönle, A. and Hell, S. W., “Resolution scaling in STED microscopy,” Opt. Express, Vol. 16, No. 6, pp. 4154–4162, 2008.CrossRefGoogle Scholar
  14. 14.
    Thio, T., Lezec, H. J., Ebbesen, T. W., Pellerin, K. M., Lewen, G. D., Nahata, A. and Linke, R. A., “Giant optical transmission of sub-wavelength apertures: physics and applications,” Nanotechnology, Vol. 13, No. 3, pp. 429–432, 2002.CrossRefGoogle Scholar
  15. 15.
    Srituravanich, W., Pan, L., Wang, Y., Sun, C., Bogy, D. B. and Zhang, X., “Flying plasmonic lens in the near field for highspeed nanolithography,” Nat. Nanotechnol., Vol. 3, No. 12, pp. 733–737, 2008.CrossRefGoogle Scholar
  16. 16.
    Wang, Y., Srituravanich, W., Sun, C. and Zhang, X., “Plasmonic Near field Scanning Probe with High Transmission,” Nano Lett., Vol. 8, No. 9, pp. 3041–3045, 2008.CrossRefGoogle Scholar
  17. 17.
    Murphy-DuBay, N., Wang, L., Kinzel, E. C., Uppuluri, S. M. V. and Xu, X., “Nanopatterning using NSOM probes integrated with high transmission nanoscale bowtie aperture,” Opt. Express, Vol. 16, No. 4, pp. 2584–2589, 2008.CrossRefGoogle Scholar
  18. 18.
    Robertson, J., “Diamond-like amorphous carbon,” Materials Science & Engineering R-Reports, Vol. 37, No. 4–6, pp. 129–281, 2002.CrossRefGoogle Scholar
  19. 19.
    Tambe, N. S. and Bhushan, B., “Nanowear mapping: a novel atomic force microscopy based approach for studying nanoscale wear at high sliding velocities,” Tribol. Lett., Vol. 20, No. 1, pp. 83–90, 2005.CrossRefGoogle Scholar
  20. 20.
    Jin, E. X. and Xu, X., “Obtaining super resolution light spot using surface plasmon assisted sharp ridge nano-aperture,” Appl. Phys. Lett., Vol. 86, No. 11, Paper No. 111106, 2005.Google Scholar
  21. 21.
    Kim, Y., Kim, S., Jung, H., Lee, E. and Hahn, J. W., “Plasmonic nano lithography with a high scan speed contact probe,” Opt. Express, Vol. 17, No. 22, pp. 19476–19485, 2009.CrossRefGoogle Scholar
  22. 22.
    Jin, E. X. and Xu, X., “Radiation transfer through nanoscale aperture,” J. Quant. Spectrosc. Radiat. Transf., Vol. 93, No. 1–3, pp. 163–173, 2005.CrossRefGoogle Scholar
  23. 23.
    Popov, E., Nevière, M., Enoch, S. and Reinisch, R., “Theory of light transmission through sub-wavelength periodic hole arrays,” Phys. Rev. B, Vol. 62, No. 23, pp. 16100–16108, 2000.CrossRefGoogle Scholar
  24. 24.
    Busch, K., von Freymann, G., Linden, S., Mingaleev, S. F., Tkeshelashvili, L. and Wegener, M., “Periodic nanostructures for photonics,” Physics Reports-Review Section of Physics Letters, Vol. 444, No. 3–6, pp. 101–202, 2007.Google Scholar
  25. 25.
    Bozhevolnyi, S. I., Erland, J., Leosson, K., Skovgaard, P. M. W. and Hvam, J. M., “Waveguiding in Surface Plasmon Polarion Band Gap Structures,” Phys. Rev. Lett., Vol. 86, No. 14, pp. 3008–3011, 2001.CrossRefGoogle Scholar
  26. 26.
    Ebbesen, T. W., Lezec, H. J., Ghaemi, H. F., Thio, T. and Wolff, P. A., “Extraordinary optical transmission through subwavelength hole arrays,” Nature, Vol. 391, No. 6668, pp. 667–669, 1998.CrossRefGoogle Scholar

Copyright information

© Korean Society for Precision Engineering and Springer-Verlag Berlin Heidelberg  2011

Authors and Affiliations

  • Howon Jung
    • 1
  • Yongwoo Kim
    • 1
  • Seok Kim
    • 1
  • Jinhee Jang
    • 1
  • Jae Won Hahn
    • 1
  1. 1.School of Mechanical EngineeringYonsei UniversitySeoulSouth Korea

Personalised recommendations