Skip to main content
Log in

A review of adhesion and friction models for gecko feet

  • Published:
International Journal of Precision Engineering and Manufacturing Aims and scope Submit manuscript

Abstract

The attachment pads of geckos exhibit the most versatile and effective adhesive known in nature. Their fibrillar structure is the primary source of high adhesion and their hierarchical structure produces the adhesion enhancement by giving the gecko the adaptability to create a large real area of contact with surfaces. Although geckos are capable of producing large adhesive forces, they retain the ability to remove their feet from an attachment surface at will. Detachment is achieved by a peeling motion of the gecko’s feet from a surface. During the last few years, many researches have been conducted to develop the theoretical models that explain the gecko to adhere and detach from surfaces at will, including micro/macroscopic gecko adhesion, friction and peeling models for gecko hierarchical fibrillar structure contacting to rough surface. This review describes the progress in the modeling filed for gecko adhesion, friction and peeling, and discussed the future issues for gecko modeling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aristotle, “Historia Animalium,” Trans. Thompson, D. A. W., 1918.

  2. Autumn, K., Liang, Y. A., Hsieh, S. T., Zesch, W., Chan, W. P., Kenny, T. W., Fearing, R. and Full, R. J., “Adhesive force of a single gecko foot-hair,” Nature, Vol. 405, No. 6787, pp. 681–685, 2000.

    Article  Google Scholar 

  3. Autumn, K., Sitti, M., Liang, Y. A., Peattie, A. M., Hansen, W. R., Sponberg, S., Kenny, T. W., Fearing, R., Israelachvili, J. N. and Full, R. J., “Evidence for van der Waals adhesion in gecko setae,” Proc. Natl. Acad. Sci. USA, Vol. 99, No. 19, pp. 12252–12256, 2002.

    Article  Google Scholar 

  4. Huber, G., Mantz, H., Spolenak, R., Mecke, K., Jacobs, K., Gorb, S. N. and Arzt, E., “Evidence for capillarity contributions to gecko adhesion from single spatula and nanomechanical measurements,” Proc. Natl. Acad. Sci. USA, Vol. 102, No. 45, pp. 16293–16296, 2005.

    Article  Google Scholar 

  5. Sun, W., Neuzil, P., Kustandi, T. S., Oh, S. and Samper, V. D., “The nature of the gecko lizard adhesive force,” Biophys. J. Vol. 89, No. 2, pp. 14–17, 2005.

    Article  Google Scholar 

  6. Kluge, A. G., “Gekkotan lizard taxonomy,” Hamadryad, Vol. 26, No. 1, pp. 1–209, 2001.

    MathSciNet  Google Scholar 

  7. Han, D., Zhou, K. and Bauer, A. M., “Phylogenetic relationships among gekkotan lizards inferred from C-mos nuclear DNA sequences and a new classification of the Gekkota,” Biol. J. Linn. Soc., Vol. 83, No. 3, pp. 353–368, 2004.

    Article  Google Scholar 

  8. Ruibal, R. and Ernst, V., “The structure of the digital setae of lizards,” J. Morph., Vol. 117, No. 3, pp. 271–294, 1965.

    Article  Google Scholar 

  9. Hiller, U., “Untersuchungen zum Feinbau und zur Funktion der Haftborsten von Reptilien,” Z. Morphol. Tiere., Vol. 62, No. 4, pp. 307–362, 1968.

    Article  Google Scholar 

  10. Irschick, D. J., Austin, C. C., Petren, K., Fisher, R. N., Losos, J. B. and Ellers, O., “A comparative analysis of clinging ability among pad-bearing lizards,” Biol. J. Linn. Soc., Vol. 59, No. 1, pp. 21–35, 1996.

    Article  Google Scholar 

  11. Tinkle, D. W., “Gecko,” Encylcopedia Americana, Grolier, Vol. 12, p. 359, 1992.

    Google Scholar 

  12. Russell, A. P., “A contribution to the functional morphology of the foot of the tokay, Gekko gecko,” J. Zool. Lond., Vol. 176, No. 3, pp. 437–476, 1975.

    Article  Google Scholar 

  13. Russell, A. P., “The morphological basis of weight-bearing in the scansors of the tokay gecko,” Can. J. Zool., Vol. 64, No. 4, pp. 948–955, 1986.

    Article  Google Scholar 

  14. Williams, E. E. and Peterson, J. A., “Convergent and alternative designs in the digital adhesive pads of scincid lizards,” Science, Vol. 215, No. 4539, pp. 1509–1511, 1982.

    Article  Google Scholar 

  15. Schleich, H. H. and Köstle, W., “Ultrastrukturen an Gecko-Zehen,” Amphibia Reptilia, Vol. 7, No. 2, pp. 141–166, 1986.

    Article  Google Scholar 

  16. Autumn, K. and Peattie, A. M., “Mechanisms of adhesion in geckos,” Integr. Comp. Biol., Vol. 42, No. 6, pp. 1081–1090, 2002.

    Article  Google Scholar 

  17. Arzt, E., Gorb, S. and Spolenak, R., “From micro to nano contacts in biological attachment devices,” Proc. Natl. Acad. Sci. USA, Vol. 100, No. 19, pp. 10603–10606, 2003.

    Article  Google Scholar 

  18. Wagler, J., “Naturliches System der Amphibien,” J. G. Cotta’schen Buchhandlung, 1830.

  19. Simmermacher, G.., “Untersuchungen uber haftapparate an tarsalgliedern von insekten,” Zeitschr. Wiss. Zool., Vol. 40, No. 7, pp. 481–556, 1884.

    Google Scholar 

  20. Schmidt, H. R., “Zur Anatomie und Physiologie der Geckopfote,” Jena. Z. Naturw., Vol. 39, No. 3, p. 551, 1904.

    Google Scholar 

  21. Hora, S. L., “The adhesive apparatus on the toes of certain geckos and tree frogs,” J. Proc. Asiat. Soc. Beng., Vol. 9, No. 4, pp. 137–145, 1923.

    Google Scholar 

  22. Dellit, W. D., “Zur anatomie und physiologie der Geckozehe,” Jena. Z. Naturw., Vol. 68, No. 3, pp. 613–658, 1934.

    Google Scholar 

  23. Gennaro, J. G. J., “The gecko grip,” Nat. Hist., Vol. 78, No. 1, pp. 36–43, 1969.

    Google Scholar 

  24. Stork, N. E., “Experimental analysis of adhesion of Chrysolina polita on a variety of surfaces,” J. Exp. Biol., Vol. 88, No. 1, pp. 91–107, 1980.

    Google Scholar 

  25. Bergmann, P. J. and Irschick, D. J., “Effects of temperature on maximum clinging ability in a diurnal gecko: evidence for a passive clinging mechanism?” J. Exp. Zool., Vol. 303A, No. 9, pp. 785–791, 2005.

    Article  Google Scholar 

  26. Huber, G., Gorb, S. N., Spolenak, R. and Arzt, E., “Resolving the nanoscale adhesion of individual gecko spatulae by atomic force microscopy,” Biol. Lett., Vol. 1, No. 1, pp. 2–4, 2005.

    Article  Google Scholar 

  27. Israelachvili, J. N., “Intermolecular and Surface Forces: 2nd edition,” Academic, 1992.

  28. Kim, T. W. and Bhushan, B., “The adhesion model considering capillarity for gecko attachment system,” J. Royal Soc. Interface, Vol. 5, No. 20, pp. 319–327, 2008.

    Article  Google Scholar 

  29. Kim, T. W. and Bhushan, B., “Adhesion analysis of multilevel hierarchical attachment system contacting with rough surface,” J. Adhesion Sci. Technol., Vol. 21, No. 1, pp. 1–20, 2007.

    Article  Google Scholar 

  30. Kim, T. W. and Bhushan, B., “Effect of stiffness of multi-level hierarchical attachment system on adhesion enhancement,” Ultramicroscopy, Vol. 107, No. 10–11, pp. 902–912, 2007.

    Article  Google Scholar 

  31. Sitti, M. and Fearing, R. S., “Synthetic gecko foot-hair for micro/nano structures as dry adhesives,” J. Adhesion Sci. Technol., Vol. 18, No. 8, pp. 1055–1074, 2003.

    Article  Google Scholar 

  32. Gao, H., Wang, X., Yao, H., Gorb, S. and Arzt, E., “Mechanics of hierarchical adhesion structures of geckos,” Mech. Mater., Vol. 37, No. 2–3, pp. 275–285, 2005.

    Article  Google Scholar 

  33. Glassmaker, N. J., Jagota, A., Hui, C. Y. and Kim, J., “Design of biomimetic fibrillar interfaces: 1. Making contact,” J. R. Soc. Interface, Vol. 1, No. 1, pp. 23–33, 2004.

    Article  Google Scholar 

  34. Persson, B. N. J., “On the mechanism of adhesion in biological systems,” J. Chem. Phys., Vol. 118, No. 16, pp. 7614–7621, 2003.

    Article  Google Scholar 

  35. Glassmaker, N. J., Jagota, A. and Hui, C. Y., “Adhesion enhancement in a biomimetic fibrillar interface,” Acta Biomaterialia, Vol. 1, No. 4, pp. 367–375, 2005.

    Article  Google Scholar 

  36. Yao, H. and Gao, H., “Mechanics of robust and releasable adhesion in biology: bottom-up designed hierarchical structures of gecko,” J. Mech. Phys. Solids, Vol. 54, No. 6, pp. 1120–1146, 2006.

    Article  MATH  Google Scholar 

  37. Jagota, A. and Bennison, S. J., “Mechanics of adhesion through a fibrillar microstructure,” Integr. Comp. Biol., Vol. 42, No. 6, pp. 1140–1145, 2002.

    Article  Google Scholar 

  38. Bhushan, B., Peressadko, A. G. and Kim, T. W., “Adhesion analysis of two-level hierarchical morphology in natural attachment systems for ’smart adhesion’,” J. Adhesion Sci. Technol., Vol. 20, No. 13, pp. 1475–1491, 2006.

    Article  Google Scholar 

  39. Shah, G. J. and Sitti, M., “Modeling and design of biomimetic adhesives inspired by gecko foot-hairs,” Proc. IEEE Int. Conf. on Robotics and Biomimetics, pp. 873–878, 2004.

  40. Spolenak, R., Gorb, S. and Arzt, E., “Adhesion design maps for bio-inspired attachment systems,” Acta Biomaterialia, Vol. 1, No. 1, pp. 5–13, 2005.

    Article  Google Scholar 

  41. Kim, T. W. and Bhushan, B., “Optimization of Biomimetic Attachment System Contacting with a Rough Surface,” J. Vac. Sci. Technol. A, Vol. 25, No. 4, pp. 1003–1012, 2007.

    Article  Google Scholar 

  42. Majidi, C., Groff, R. E., Autumn, K., Baek, S., Bush, B., Gravish, N., Maboudian, R., Maeno, Y., Schubert, B., Wilkinson, M. and Fearing, R. S., “High friction from a stiff polymer using micro-fiber arrays,” Phys. Rev. Lett., Vol. 97, No. 7, Paper No. 076103, 2006.

  43. Autumn, K., Dittmore, A., Santos, D., Spenko, M. and Cutkosky, M., “Frictional Adhesion: a new angle on gecko attachment,” J. Exp. Biol., Vol. 209, No. 18, pp. 3569–3579, 2006.

    Article  Google Scholar 

  44. Tian, Y., Pesika, N. S., Zhao, B., Rosenberg, K., Zeng, H., McGuiggan, P., Autumn, K. and Israelachvili, J. N., “Adhesion and Friction in gecko toe attachment and detachment,” Proc. Natl. Acad. Sci. USA, Vol. 103, No. 51, pp. 19320–19325, 2006.

    Article  Google Scholar 

  45. Santos, D., Spenko, M., Parness, A., Kim, S. and Cutkosky, M., “Directional adhesion for climbing: theoretical and practical considerations,” J. Adhesion Sci. Technol., Vol. 21, No. 12–13, pp. 1317–1341, 2007.

    Article  Google Scholar 

  46. Kendall, K., “Thin-film peeling — the elastic term,” J. Phys. D, Vol. 8, No. 13, pp. 1449–4452, 1975.

    Article  Google Scholar 

  47. Persson, B. N. J. and Gorb, S., “The effect of surface roughness on the adhesion of elastic plates with application to biological systems,” J. Chem. Phys., Vol. 119, No. 21, pp. 11437–11444, 2003.

    Article  Google Scholar 

  48. Spolenak, R., Gorb, S., Gao, H. and Arzt, E., “Effects of contact shape on the scaling of biological attachments,” Proc. R. Soc. Lond. A, Vol. 461, No. 2054, pp. 1–15, 2005.

    Google Scholar 

  49. Maderson, P. F. A., “Keratinized epidermal derivatives as an aid to climbing in gekkonid lizards,” Nature, Vol. 203, pp. 780–781, 1964.

    Article  Google Scholar 

  50. Rizzo, N., Gardner, K., Walls, D., Keiper-Hrynko, N. and Hallahan, D., “Characterization of the. structure and composition of gecko adhesive setae,” J. Royal Soc. Interface, Vol. 3, No. 8, pp. 441–451, 2006.

    Article  Google Scholar 

  51. Bhushan, B., “Introduction to Tribology,” Wiley, pp. 154–156, 2002.

  52. Bhushan, B., “Introduction to Nanotribology and Nanomechanics,” Springer-Verlag, pp. 354–368, 2005.

  53. Johnson, K. L., Kendall, K. and Roberts, A. D., “Surface energy and the contact of elastic solids,” Proc. R. Soc. Lond. A., Vol. 324, No. 1558, pp. 301–313, 1971.

    Article  Google Scholar 

  54. Bhushan, B., “Principles and Applications of Tribology,” Wiley, pp. 303–311, 1999.

  55. Orr, F. M., Scriven, L. E. and Rivas, A. P., “Pendular rings between solids: meniscus properties and capillary force,” J. Fluid Mech., Vol. 67, No. 4, pp. 723–742, 1975.

    Article  MATH  Google Scholar 

  56. Bertram, J. E. A. and Gosline, J. M., “Functional design of horse hoof keratin: the modulation of mechanical properties through hydration effects,” J. Exp. Biol., Vol. 130, No. 1, pp. 121–136, 1987.

    Google Scholar 

  57. Autumn, K., Majidi, C., Groff, R. E., Dittmore, A. and Fearing, R., “Effective elastic modulus of isolated gecko setal arrays,” J. Exp. Biol., Vol. 209, No. 18, pp. 3558–3568, 2006.

    Article  Google Scholar 

  58. Bikerman, J. J., “The Science of Adhesive Joints,” Academic, 1961.

  59. Zisman, W. A., “Influence of constitution on adhesion,” Ind. Eng. Chem., Vol. 55, No. 10, pp. 18–38, 1963.

    Article  Google Scholar 

  60. Houwink, R. and Salomon, G., “Effect of contamination on the adhesion of metallic couples in ultra high vacuum,” J. Appl. Phys., Vol. 38, No. 4, pp. 1896–1904, 1967.

    Article  Google Scholar 

  61. Bhushan, B., “Springer Handbook of Nanotechnology, 2nd Ed.,” Springer-Verlag, pp. 605–624, 2006.

  62. Hamaker, H. C., “London van der Waals attraction between spherical bodies,” Physica, Vol. 4, No. 10, p. 1058, 1937.

    Article  Google Scholar 

  63. Israelachvili, J. N. and Tabor, D., “The measurement of Van der Waals dispersion forces in the range of 1.5 to 130 nm,” Proc. R. Soc. Lond. A, Vol. 331, No. 1584, pp. 19–38, 1972.

    Article  Google Scholar 

  64. Zimon, A. D., “Adhesion of Dust and Powder, translated from Russian by M. Corn,” Adhesion Science and Technology, 1969.

  65. Fan, P. L. and O’Brien, M. J., “Adhesion in deformable isolated capillaries,” Adhesion Science and Technology, 1975.

  66. Phipps, P. B. and Rice, D. W., “Role of water in atmospheric corrosion,” ACS Symposium Series, No. 89, 1979.

  67. Derjaguin, B. V., Muller, V. M. and Toporov, Y. P., “Effect of contact deformation on the adhesion of particles,” J. Colloid Interface Sci., Vol. 53, No. 2, pp. 314–326, 1975.

    Article  Google Scholar 

  68. Wan, K. T., Smith, D. T. and Lawn, B. R., “Fracture and contact adhesion energies of mica-mica, silica-silica, and mica-silica interfaces in dry and moist atmospheres,” J. Am. Ceram. Soc., Vol. 75, No. 3, pp. 667–676, 1992.

    Article  Google Scholar 

  69. Federle, W., “Why so many adhesive pads hairy?” J. Exp. Biol., Vol. 209, No. 14, pp. 2611–2621, 2006.

    Article  Google Scholar 

  70. Griffith, A. A., “The phenomena of rupture and flow in solids,” Philos. Trans. R. Soc. Lond. A, Vol. 221, pp. 163–198, 1921.

    Article  Google Scholar 

  71. Gao, H., Ji, B., Jaeger, I. L., Arzt, E. and Fratzl, P., “Materials become insensitive to flaws at nanoscale: lessons from nature,” Proc. Natl. Acad. Sci. USA, Vol. 100, No. 10, pp. 5597–5600, 2003.

    Article  Google Scholar 

  72. Gao, H. and Yao, H., “Shape insensitive optimal adhesion of nanoscale fibrillar structures,” Proc. Natl. Acad. Sci. USA, Vol. 101, No. 21, pp. 7851–7856, 2004.

    Article  Google Scholar 

  73. Hui, C. Y., Glassmaker, N. J., Tang, T. and Jagota, A., “Design of biomimetic fibrillar interfaces: 2. Mechanics of enhanced adhesion,” J. R. Soc. Interface, Vol. 1, No. 1, pp. 35–48, 2004.

    Article  Google Scholar 

  74. Huber, G., Gorb, S. N., Hosoda, N., Spolenak, R. and Arzt, E., “Influence of surface roughness on gecko adhesion,” Acta Biomaterialia, Vol. 3, No. 4, pp. 607–610, 2007.

    Article  Google Scholar 

  75. Hui, C. Y., Glassmaker, N. J. and Jagota, A., “How compliance compensates for surface roughness in fibrillar adhesion,” J. Adhesion, Vol. 81, No. 7–8, pp. 699–721, 2005.

    Article  Google Scholar 

  76. Northen, M. T. and Turner, K. L., “A batch fabricated biomimetic dry adhesive,” Nanotechnology, Vol. 16, No. 8, pp. 1159–1166, 2005.

    Article  Google Scholar 

  77. Northen, M. T. and Turner, K. L., “Meso-scale adhesion testing of integrated micro- and nano-scale structures,” Sensors and Actuators A, Vol. 130–131, No. 8, pp. 583–587, 2006.

    Article  Google Scholar 

  78. Sitti, M., “High aspect ratio polymer micro/nano-structure manufacturing using nanoembossing, nanomolding and directed self-assembly,” Proc. IEEE/ASME Advanced Mechatronics Conf., Vol. 2, pp. 886–890, 2003.

    Google Scholar 

  79. Jeong, H. E., Lee, S. H., Kim, J. K. and Suh, K. Y., “Nanoengineered Multiscale Hierarchical Structures with Tailored Wetting Properties,” Langmuir, Vol. 22, No. 4, pp. 1640–1645, 2006.

    Article  Google Scholar 

  80. del Campo, A. and Arzt, E., “Design parameter and current fabrication approaches for developing bioinspired dry adhesives,” Macromol. Biosci., Vol. 7, No. 2, pp. 118–127, 2007.

    Article  Google Scholar 

  81. Aksak, B., Sitti, M., Casell, A., Li, J., Meyyappan, M. and Callen, P., “Friction of partially embedded vertically aligned carbon nanofibers inside elastomers,” Appl. Phys. Lett., Vol. 91, No. 6, Paper No. 061906, 2007.

  82. Autumn, K., “Properties, Principles, and Parameters of the Gecko Adhesive System,” Biological Adhesives, pp. 225–256, 2006.

  83. Zhao, B., Pesika, N. S., Tian, Y., Rosenberg, K., Zeng, H., McGuiggan, P., Autumn, K. and Israelachvili, J. N., “Adhesion and Friction force coupling of gecko setal arrays: Implications for structured adhesive surfaces,” Langmuir, Vol. 24, No. 4, pp. 1517–1524, 2008.

    Article  Google Scholar 

  84. Pesika, N., Tian, Y., Zhao, B., Rosenberg, K., Zeng, H., McGuiggan, P., Autumn, K. and Israelachvili, J. N., “Peelzone model of tape peeling based on the gecko adhesive system,” J. Adhesion, Vol. 83, No. 4, pp. 383–401, 2007.

    Article  Google Scholar 

  85. Moore, D. F., “The friction and lubrication of Elastomers,” Pergamon, 1972.

  86. Bhushan, B., Sharma, B. S. and Bradshaw, R. L., “Friction in Magenetic Tapes I: Assessment of relevant theory,” ASLE Trans., Vol. 27, No. 1, pp. 33–44, 1984.

    Google Scholar 

  87. Makinson, K. R., “On the cause of frictional difference of the wool fiber,” Trans. Faraday Soc., Vol. 44, No. 2, pp. 279–282, 1948.

    Article  Google Scholar 

  88. McFarlane, J. S. and Tabor, D., “Adhesion of solids and the effects of surface films,” Proc. R. Soc. Lond. A., Vol. 202, No. 1069, pp. 224–243, 1950.

    Article  Google Scholar 

  89. Tabor, D., “Adhesion and friction, in The Properties of Diamond,” Academic, pp. 325–348, 1979.

  90. Bhushan, B. and Ruan, J., “Atomic-scale friction measurements using friction force microscopy: Part II — Application to magnetic media,” ASME J. Tribol., Vol. 116, No. 3, pp. 452–458, 1994.

    Google Scholar 

  91. Tanaka, K., “Friction and deformation of polymers,” J. Phys. Soc. Jpn., Vol. 16, No. 10, pp. 2003–2016, 1961.

    Article  Google Scholar 

  92. Hegmon, R. R., “The contribution of deformation losses to rubber friction,” Rubber Chem. and Technol., Vol. 42, No. 4, pp. 1122–1135, 1969.

    Google Scholar 

  93. Bhushan, B. and Zhao, Z., “Macro- and microscale tribological studies of molecularly-thick boundary layers of perfuluoropolyether Lubricants for magnetic thin-film rigid disks,” J. Info. Storage proc. Syst., Vol. 1, No. 1, pp. 1–21, 1999.

    Google Scholar 

  94. Sitti, M. and Fearing, R. S., “Synthetic gecko foot-hair for micro/nano structures for future wall-climbing robots,” Proc. IEEE Int. Conf. on Robotics and Automation, pp. 1164–1170, 2003.

  95. Menon, C., Murphy, M. and Sitti, M., “Gecko inspired surface climbing robots,” Proc. IEEE Int. Conf. on Robotics and Biomimetics, pp. 431–436, 2004.

  96. Autumn, K., Buehler, M., Cutkosky, M., Fearing, R., Full, R. J., Goldman, D., Groff, R., Provancher, W., Rizzi, A. A., Sranli, U., Saunders, A. and Koditschek, D. E., “Robotics in scansorial environments,” Proc. SPIE, Vol. 5804, pp. 291–302, 2005.

    Article  Google Scholar 

  97. Kim, S., Spenko, M., Trujillo, S., Heyneman, B., Mattoli, V. and Cutkosky, M. R., “Whole body adhesion: hierarchical, directional and distributed control of adhesive forces for a climbing robot,” Proc. IEEE Int. Conf. on Robotics and Automation, pp. 1268–1273, 2007.

  98. Geim, A. K., Dubonos, S. V., Grigorieva, I. V., Novoselov, K. S., Zhukov, A. A. and Shapoval, S. Y., “Microfabricated adhesive mimicking gecko foot-hair,” Nat. Mater., Vol. 2, No. 7, pp. 461–463, 2003.

    Article  Google Scholar 

  99. Yurdumakan, B., Raravikar, N. R., Ajayan, P. M. and Dhinojwala, A., “Synthetic gecko foot-hairs from multiwalled carbon nanotubes,” Chem. Comm., pp. 3799–3801, 2005.

  100. Bhushan, B. and Sayer, R. A., “Surface characterization and friction of a bio-inspired reversible adhesive tape,” Microsyst. Technol., Vol. 13, No. 1, pp. 71–78, 2007.

    Article  Google Scholar 

  101. Burton, Z. and Bhushan, B., “Hydrophobicity, adhesion, and friction properties of nanopatterned polymers and scale dependence for micro- and nanoelectromechanical systems,” Nano Letters, Vol. 5, No. 8, pp. 1607–1613, 2005.

    Article  Google Scholar 

  102. Zhao, Y., Tong, T., Delzeit, L., Kashani, A., Meyyappan, M. and Majumdar, A., “Interfacial energy and strength of multiwalled-carbon-nanotube-based dry adhesive,” J. Vac. Sci. Technol. B, Vol. 24, No. 1, pp. 331–335, 2006.

    Article  Google Scholar 

  103. Kim, T. I., Jeong, H. E., Suh, K. Y. and Lee, H. H., “Stooped Nanohairs: Geometry-Controllable, Unidirectional, Reversible, Robust Gecko-like Dry Adhesive,” Adv. Mater., Vol. 21, No. 22, pp. 2276–2281, 2009.

    Article  Google Scholar 

  104. Jeong, H. E., Lee, J. K., Kim, H. N., Moon, S. H. and Suh, K. Y., “A nontransferring dry adhesive with hierarchical polymer nanohairs,” Proc. Natl. Acad. Sci. USA, Vol. 106, No. 14, pp. 5639–5644, 2009.

    Article  Google Scholar 

  105. Murphy, M. P., Kim, S. and Sitti, M, “Enhanced adhesion by gecko-inspired hierarchical fibrillar adhesives,” ACS Appl. Mater. Interfaces, Vol. 1, No. 4, pp. 849–855, 2009.

    Article  Google Scholar 

  106. Kobayashi, H., Moronuki, N. and Kaneko, A., “Self-assembly of Fine Particles Applied to the Production of Antireflective Surfaces,” Int. J. Prec. Eng. Manuf., Vol. 9, No. 1, pp. 25–29, 2008.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tae-Wan Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kwak, JS., Kim, TW. A review of adhesion and friction models for gecko feet. Int. J. Precis. Eng. Manuf. 11, 171–186 (2010). https://doi.org/10.1007/s12541-010-0020-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12541-010-0020-5

Keywords

Navigation