Skip to main content
Log in

Research Status and Prospects of Ultrasonic Vibration-Assisted Joining Technology for Difficult-to-Weld High-Strength Alloys

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

Ultrasonic vibration-assisted joining technology has garnered significant attention in recent years, as it amalgamates the merits of conventional hot and cold joining techniques with ultrasonic vibration-assisted forming technology. It offers significant advantages in achieving advanced joining for difficult-to-weld high-strength alloy materials, improving the mechanical properties of conventional joining methods, and enhancing fatigue strength. Extensive research has been conducted by scholars on ultrasonic-assisted material forming and improving joining performance, which has found practical applications in the formation and joining of various difficult-to-weld high-strength alloys. The present paper provides a concise overview of the fundamental principles and historical development of ultrasonic vibration-assisted joining technology. The effects of various process parameters on ultrasonic vibration-assisted joining joints are also analyzed, and the latest techniques for ultrasonic vibration-assisted joining of several challenging-to-weld high-strength alloys are described. Furthermore, this study presents a comprehensive overview of the most recent advancements and emerging trends in finite element simulation techniques for ultrasonic vibration-assisted joining. The objective of this study is to provide a comprehensive reference for the investigation of ultrasonic vibration-assisted joining technology.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. R. Soni, R. Verma, R. Kumar Garg, V. Sharma, Mater. Today: Proc. (2023). https://doi.org/10.1016/j.matpr.2023.08.108

    Article  Google Scholar 

  2. A.P. Mouritz (ed.), in Introduction to Aerospace Materials (Woodhead Publishing, Sawston, 2012), pp. 1–14

  3. D.K. Bond, B. Goddard, R.C. Singleterry, S.B.Y. Leóna, Acta Astronaut. 165, 68–95 (2019). https://doi.org/10.1016/J.ACTAASTRO.2019.07.022

    Article  Google Scholar 

  4. A.M. Khalil, I.S. Loginova, A.N. Solonin, A.O. Mosleh, Mater. Lett. 277, 128364 (2020). https://doi.org/10.1016/j.matlet.2020.128364

    Article  CAS  Google Scholar 

  5. X.-L. Zhang, G.-K. Yu, W.-B. Zou, Y.-S. Ji, Y.-Z. Liu, J.-L. Cheng, China Foundry 15, 418–421 (2018). https://doi.org/10.1007/s41230-018-8098-y

    Article  Google Scholar 

  6. L. Sun, Y. Ma, B. Fan, S. Wang, Z. Wang, J. Magnes. Alloys 10, 2875–2888 (2022). https://doi.org/10.1016/j.jma.2021.04.010

    Article  CAS  Google Scholar 

  7. S.S. Li, X. Yue, Q.Y. Li, H.L. Peng, B.X. Dong, T.S. Liu, H.Y. Yang, J. Fan, S.L. Shu, F. Qiu, Q.C. Jiang, J. Mater. Res. Technol. 27, 944–983 (2023). https://doi.org/10.1016/j.jmrt.2023.09.274

    Article  CAS  Google Scholar 

  8. Y. Yang, X. Xiong, J. Chen, X. Peng, D. Chen, F. Pan, J. Magnes. Alloys 9, 705–747 (2021). https://doi.org/10.1016/j.jma.2021.04.001

    Article  CAS  Google Scholar 

  9. C. Han, P. Jiang, S. Geng, G. Mi, C. Wang, Y. Li, J. Mater. Res. Technol. 14, 2219–2232 (2021). https://doi.org/10.1016/j.jmrt.2021.07.150

    Article  CAS  Google Scholar 

  10. T. Dursun, C. Soutis, Mater. Des. (1980-2015) 56, 862–871 (2014). https://doi.org/10.1016/j.matdes.2013.12.002

    Article  CAS  Google Scholar 

  11. G. Cam, H.M. Flower, D.R.F. West, Mater. Sci. 7(6), 505–511 (1991). https://doi.org/10.1179/mst.1991.7.6.505

    Article  CAS  Google Scholar 

  12. N. Kashaev, V. Ventzke, G. Çam, J. Manuf. Process. 36, 571–600 (2018). https://doi.org/10.1016/j.jmapro.2018.10.005

    Article  Google Scholar 

  13. J. Bai, Y. Yang, C. Wen, J. Chen, G. Zhou, B. Jiang, X. Peng, F. Pan, J. Magnes. Alloys 11, 3609–3619 (2023). https://doi.org/10.1016/j.jma.2023.09.015

    Article  Google Scholar 

  14. E.A. Starke, J.T. Staley, Prog. Aeronaut. Sci. 32, 131–172 (1996). https://doi.org/10.1016/0376-0421(95)00004-6

    Article  Google Scholar 

  15. Y. Wei, K.K.D.H. Bhadeshia, T. Sourmail, J. Mater. Sci. Technol. 21(3), 403–407 (2005). https://jmst.org/EN/Y2005/V21/I03/403

  16. G. Çam, Mater. Today: Proc. 62, 77–85 (2022). https://doi.org/10.1016/j.matpr.2022.02.137

    Article  CAS  Google Scholar 

  17. P. Liu, Y. Li, H. Geng, J. Wang, Mater. Lett. 61, 1288–1291 (2007). https://doi.org/10.1016/j.matlet.2006.07.010

    Article  CAS  Google Scholar 

  18. U. Abdul Khaliq, M.R. Muhamad, F. Yusof, S. Ibrahim, M.S. Mohd Isa, Z. Chen, G. Çam, J. Mater. Res. Technol. 27, 4595–4624 (2023). https://doi.org/10.1016/j.jmrt.2023.10.158

    Article  CAS  Google Scholar 

  19. G. Ipekoglu, G. Cam, IOP Conf. Mater. Sci. 629, 012007 (2019).https://doi.org/10.1088/1757-899X/629/1/012007

  20. B. Ma, X. Gao, Y. Huang, P.P. Gao, Y. Zhang, Opt. Laser Technol. 167, 109721 (2023). https://doi.org/10.1016/j.optlastec.2023.109721

    Article  CAS  Google Scholar 

  21. K.M. Hussein, H. Akbari, R. Noorossana, R. Yadegari, R. Ashiri, J. Mater. Res. Technol. 27, 4064–4073 (2023). https://doi.org/10.1016/j.jmrt.2023.10.220

    Article  CAS  Google Scholar 

  22. D. Afshari, M. Sedighi, Z. Barsoum, R.L. Peng, Proc. Inst. Mech. Eng. Part B 226, 1026–1032 (2012). https://doi.org/10.1177/0954405411435198

    Article  CAS  Google Scholar 

  23. X.C. He, L. Lei, Y. Zhang, B.Y. Xing, Acta Phys. Pol. A 131, 16–19 (2017). https://doi.org/10.12693/APhysPolA.131.16

    Article  CAS  Google Scholar 

  24. C. Shao, Z. Wang, J. Li, Y. Zhai, J. Lin, R. Bai, Y. Guan, G. Zhao, J. Mater. Res. Technol. 23, 2467–2478 (2023). https://doi.org/10.1016/j.jmrt.2023.01.185

    Article  CAS  Google Scholar 

  25. J. Zhai, Y. Guan, Y. Liu, F. Chen, J. Lin, J. Mater. Res. Technol. 24, 7852–7864 (2023). https://doi.org/10.1016/j.jmrt.2023.05.068

    Article  CAS  Google Scholar 

  26. A. Siddiq, T. El Sayed, Mater. Lett. 65, 356–359 (2011). https://doi.org/10.1016/j.matlet.2010.10.031

    Article  CAS  Google Scholar 

  27. W. Zhao, C.S. Wu, Int. J. Mach. Tool Manu. 145, 103434 (2019). https://doi.org/10.1016/j.ijmachtools.2019.103434

    Article  Google Scholar 

  28. K. Siegert, J. Ulmer, Prod. Eng. 5(1), 9–12 (1998)

    Google Scholar 

  29. V.C. Kumar, I.M. Hutchings, Tribol. Int. 37, 833–840 (2004). https://doi.org/10.1016/j.triboint.2004.05.003

    Article  CAS  Google Scholar 

  30. B. Schinke, T. Malmberg, Nucl. Eng. Des. 100, 281–296 (1987). https://doi.org/10.1016/0029-5493(87)90080-X

    Article  CAS  Google Scholar 

  31. X. Wang, C. Wang, Y. Liu, C. Liu, Z. Wang, B. Guo, D. Shan, Int. J. Plast. 136, 102879 (2021). https://doi.org/10.1016/j.ijplas.2020.102879

    Article  CAS  Google Scholar 

  32. Z. Yao, G.Y. Kim, L.A. Faidley, Q. Zou, D. Mei, Z. Chen, J. Mater. Process. Technol. 212, 640–646 (2012)

    Article  CAS  Google Scholar 

  33. H. Zhou, H. Cui, Q.H. Qin, J. Mater. Process. Technol. 251, 146–159 (2018). https://doi.org/10.1016/j.jmatprotec.2017.08.021

    Article  CAS  Google Scholar 

  34. J. Lin, C. Pruncu, L. Zhu, J. Li, Y. Zhai, L. Chen, Y. Guan, G. Zhao, J. Mater. Process. Technol. 299, 117360 (2022). https://doi.org/10.1016/j.jmatprotec.2021.117360

    Article  CAS  Google Scholar 

  35. H. Zhou, H. Cui, Q.H. Qin, H. Wang, Y. Shen, Mater. Sci. Eng. A 682, 376–388 (2017). https://doi.org/10.1016/j.msea.2016.11.021

    Article  Google Scholar 

  36. J. Lin, J. Li, T. Liu, L. Zhu, X. Chu, G. Zhao, Y. Guan, J. Mater. Process. Technol. 288, 116881 (2021). https://doi.org/10.1016/j.jmatprotec.2020.116881

    Article  CAS  Google Scholar 

  37. C.L. Yang, C.S. Wu, L. Shi, J. Manuf. Process. 35, 118–126 (2018). https://doi.org/10.1016/j.jmapro.2018.07.025

    Article  Google Scholar 

  38. H. Storck, W. Littmann, J. Wallaschek, M. Mracek, Ultrasonics 40, 379–383 (2002). https://doi.org/10.1016/S0041-624X(02)00126-9

    Article  CAS  PubMed  Google Scholar 

  39. V.C. Kumar, I.M. Hutchings, Tribol. Int. 37, 833–840 (2004). https://doi.org/10.1016/j.triboint.2004.05.003

    Article  CAS  Google Scholar 

  40. N.Y. Ben, Q. Zhang, D.A. Meng, M.G. Lee, J. Mater. Process. Technol. 253, 178–194 (2017). https://doi.org/10.1016/j.jmatprotec.2017.10.044

    Article  CAS  Google Scholar 

  41. M. Cao, S. Yang, W. Li, S. Yang, Key Eng. Mater. 359–360, 374–378 (2008)

    Google Scholar 

  42. O.E. Mattiat, W.P. Mason, Phys. Today 25(6), 57–58 (2013). https://doi.org/10.1063/1.3070895

    Article  Google Scholar 

  43. W. Heywang , K. Lubitz , W. Wersing, Piezoelectricity: Evolution and Future of a Technology, 1st edn. (Springer, Berlin, 2008)

    Google Scholar 

  44. K.H.W. Seah, Y.S. Wong, L.C. Lee, J. Mater. Process. Technol. 37(1–4), 801–816 (1993). https://doi.org/10.1016/0924-0136(93)90138-V

    Article  Google Scholar 

  45. J.C. Slaughter, M.J. Dapino, R.C. Smith, A.B. Flatau, Proc. SPIE 3985: 366–377 (2000). https://doi.org/10.1117/12.388838

  46. W. Cai, J. Zhang, P. Feng, D. Yu, Z. Wu, Int. J. Adv. Des. Manuf. Technol. 90, 2925–2933 (2017). https://doi.org/10.1007/s00170-016-9602-4

    Article  Google Scholar 

  47. W. Cai, P. Feng, J. Zhang, Z. Wu, D. Yu, J. Vibroeng. 18(2), 1307–1318 (2016). https://doi.org/10.21595/jve.2015.16341

    Article  Google Scholar 

  48. X.M. Cheng, K. Yang, J. Wang, W.T. Xiao, S.S. Huang, J. Manuf. Process. 84, 1196–1216 (2022). https://doi.org/10.1016/j.jmapro.2022.10.067

    Article  Google Scholar 

  49. M. Shakil, N.H. Tariq, M. Ahmad, M.A. Choudhary, J.I. Akhter, S.S. Babu, Mater. Des. 55, 263–273 (2014). https://doi.org/10.1016/j.matdes.2013.09.074

    Article  CAS  Google Scholar 

  50. J. Yang, S. Wei, W. Ji, R. Chang, Z. Lu, S. Xiao, Y. Chen, H. Zhou, Mater. Charact. 184, 111616 (2022). https://doi.org/10.1016/j.matchar.2021.111616

    Article  CAS  Google Scholar 

  51. F. Scherm, J. Bezold, U. Glatzel, Sci. Technol. Weld. Join. 17, 364–367 (2012). https://doi.org/10.1179/136217112X13333824902080

    Article  CAS  Google Scholar 

  52. X.-M. Cheng, K. Yang, S.-Z. Liu, S.-L. Ji, J. Wang, Trans. Nonferrous Met. Soc. China 33, 3027–3038 (2023). https://doi.org/10.1016/S1003-6326(23)66315-0

    Article  CAS  Google Scholar 

  53. H. Zhou, X. Gu, X. Gu, J. Dong, G. Xu, J. Mater. Res. Technol. 20, 139–146 (2022). https://doi.org/10.1016/j.jmrt.2022.07.063

    Article  CAS  Google Scholar 

  54. H. Bang, H. Bang, H. Song, S. Joo, Mater. Des. 51, 544–551 (2013). https://doi.org/10.1016/j.matdes.2013.04.057

    Article  CAS  Google Scholar 

  55. M.S. Kenevisi, S.M. Mousavi Khoie, Mater. Des. 38, 19–25 (2012). https://doi.org/10.1016/j.matdes.2012.01.046

    Article  CAS  Google Scholar 

  56. A. Panteli, Y.C. Chen, D. Strong, X. Zhang, P.B. Prangnell, JOM 64, 414–420 (2012). https://doi.org/10.1007/s11837-012-0268-6

    Article  CAS  Google Scholar 

  57. L.M. Liu, F. Liu, Sci. Technol. Weld. Join. 18, 414–420 (2013). https://doi.org/10.1179/1362171813Y.0000000115

    Article  CAS  Google Scholar 

  58. D. Ren, K. Zhao, M. Pan, Y. Chang, S. Gang, D. Zhao, Scr. Mater. 126, 58–62 (2017). https://doi.org/10.1016/j.scriptamat.2016.08.003

    Article  CAS  Google Scholar 

  59. C.Q. Zhang, J.D. Robson, P.B. Prangnell, J. Mater. Process. Technol. 231, 382–388 (2016). https://doi.org/10.1016/j.jmatprotec.2016.01.008

    Article  CAS  Google Scholar 

  60. N. Rajiv Kumar, S. Nishanth, S. Karthick, T. Ramakrishnan, N. Arul, K. Syed, Mater. Today: Proc. (2023). https://doi.org/10.1016/j.matpr.2023.05.608

    Article  Google Scholar 

  61. F. Ning, W. Cong, J. Manuf. Process. 51, 174–190 (2020). https://doi.org/10.1016/j.jmapro.2020.01.028

    Article  Google Scholar 

  62. A. Siddiq, T.E. Sayed, Comput. Mater. Sci. 51, 241–251 (2012). https://doi.org/10.1016/j.commatsci.2011.07.023

    Article  CAS  Google Scholar 

  63. H. Huang, A. Pequegnat, B.H. Chang, M. Mayer, D. Du, Y. Zhou, J. Appl. Phys. 106, 113514 (2009). https://doi.org/10.1063/1.3266170

    Article  PubMed  PubMed Central  Google Scholar 

  64. C.Y. Kong, R.C. Soar, P.M. Dickens, Mater. Sci. Eng. A 363, 99–106 (2003). https://doi.org/10.1016/S0921-5093(03)00590-2

    Article  CAS  Google Scholar 

  65. B. Sun, Ultrasonic vibration-assisted cinching process and mechanical properties of aluminium alloy joints, Master Thesis, Shandong University (2022)

  66. P. Rajalingam, S. Rajakumar, S. Kavitha, T. Sonar, Int. J. Lightweight Mater. Manuf. 7, 25–36 (2024). https://doi.org/10.1016/j.ijlmm.2023.07.002

    Article  Google Scholar 

  67. B. Langenecker, Rev. Sci. Instrum. 37, 103–106 (1966). https://doi.org/10.1063/1.1719922

    Article  Google Scholar 

  68. H. Huang, A. Pequegnat, B.H. Chang, M. Mayer, D. Du, Y. Zhou, J. Appl. Phys. 106, 1144–1198 (2009). https://doi.org/10.1063/1.3266170

    Article  CAS  Google Scholar 

  69. F. Blaha, B. Langenecker, Acta Metall. 7, 93–100 (1959). https://doi.org/10.1016/0001-6160(59)90114-2

    Article  CAS  Google Scholar 

  70. M. Burmeister, E. Kerscher, Ultrasonics 134, 107053 (2023). https://doi.org/10.1016/j.ultras.2023.107053

    Article  CAS  PubMed  Google Scholar 

  71. H. Wang, Y. Hu, F. Ning, W. Cong, J. Mater. Process. Technol. 276, 116395 (2020). https://doi.org/10.1016/j.jmatprotec.2019.116395

    Article  CAS  Google Scholar 

  72. H. Wang, G. Song, G. Tang, Mater. Sci. Eng. A 662, 456–467 (2016). https://doi.org/10.1016/j.msea.2016.03.097

    Article  CAS  Google Scholar 

  73. Y. Bai, M. Yang, J. Mater. Process. Technol. 229, 367–374 (2016). https://doi.org/10.1016/j.jmatprotec.2015.06.006

    Article  Google Scholar 

  74. J. Zhao, Z. Liu, Mater. Des. 107, 238–249 (2016). https://doi.org/10.1016/j.matdes.2016.06.024

    Article  CAS  Google Scholar 

  75. D.A. Meng, X. Zhao, S. Zhao, Q. Han, Mater. Sci. Eng. A. 743, 472–481 (2019). https://doi.org/10.1016/j.msea.2018.11.115

    Article  CAS  Google Scholar 

  76. X. Wang, Z. Qi, W. Chen, Y. Xiao, Ultrasonics 116, 106452 (2021). https://doi.org/10.1016/j.ultras.2021.106452

    Article  CAS  PubMed  Google Scholar 

  77. A.T. Tan, A.W. Tan, F. Yusof, Ultrason. Sonochem. 34, 616–625 (2017). https://doi.org/10.1016/j.ultsonch.2016.06.039

    Article  CAS  PubMed  Google Scholar 

  78. A.T. Tan, A.W. Tan, F. Yusof, J. Mater. Process. Technol. 238, 8–14 (2016). https://doi.org/10.1016/j.jmatprotec.2016.06.036

    Article  CAS  Google Scholar 

  79. S. Manickam, C. Rajendran, S. Ragu Nathan, V. Sivamaran, V. Balasubramanian, Int. J. Lightweight Mater. Manuf. 6, 33–45 (2023). https://doi.org/10.1016/j.ijlmm.2022.07.005

    Article  CAS  Google Scholar 

  80. A.N. Aufa, M.Y.M. Daud, M.Z. Hassan, R. Mohammad, S.A.A. Aziz, M.A. Suhot, Mater. Today: Proc. (2023). https://doi.org/10.1016/j.matpr.2022.12.215

    Article  Google Scholar 

  81. F. Rubino, H. Parmar, V. Esperto, P. Carlone, Mater. Manuf. Processes. 35, 1051–1068 (2020). https://doi.org/10.1080/10426914.2020.1758330

  82. P.R. Pati, S. Das, M.P. Satpathy, B.C. Routara, S.K. Sahoo, S.K. Bhuyan, Mater. Today: Proc. 33, 5168–5173 (2020). https://doi.org/10.1016/j.matpr.2020.02.873

    Article  CAS  Google Scholar 

  83. H. Li, C. Zhang, Y. Deng, K. Zhou, Z. Ni, F. Yan, Q. Liu, J. Mater. Res. Technol. 26, 328–343 (2023). https://doi.org/10.1016/j.jmrt.2023.07.188

    Article  CAS  Google Scholar 

  84. S. Dhara, A. Das, Mater. Sci. Eng: A. 791, 139795 (2020). https://doi.org/10.1016/j.msea.2020.139795

    Article  CAS  Google Scholar 

  85. D. Zhao, C. Jiang, K. Zhao, J. Mater. Res. Technol. 23, 1273–1284 (2023). https://doi.org/10.1016/j.jmrt.2023.01.095

    Article  CAS  Google Scholar 

  86. P.R. Pati, S. Das, M.P. Satpathy, B.C. Routara, S.K. Sahoo, S.K. Bhuyan, Mater. Today: Proc. 33, 5168–5173 (2020). https://doi.org/10.1016/j.matpr.2020.02.873

    Article  CAS  Google Scholar 

  87. S. Yadav, C. Doumanidis, J. Manuf. Process. 7, 153–161 (2005). https://doi.org/10.1016/S1526-6125(05)70092-X

    Article  Google Scholar 

  88. A. Das, D. Li, D. Williams, D. Greenwood, World Electr. Veh. J. 9(2), 22 (2018). https://doi.org/10.3390/wevj9020022

    Article  Google Scholar 

  89. S. Kumar, A. Mahajan, S. Kumar, H. Singh, Mater. Today: Proc. 56, 3051–3057 (2022). https://doi.org/10.1016/j.matpr.2021.12.097

    Article  Google Scholar 

  90. L. Ruilin, H. Diqiu, L. Luocheng, Y. Shaoyong, Y. Kunyu, Int. J. Adv. Manuf. Tech. 73, 321–327 (2014). https://doi.org/10.1007/s00170-014-5813-8

    Article  Google Scholar 

  91. B.T. Gibson, D.H. Lammlein, T.J. Prater, W.R. Longhurst, C.D. Cox, M.C. Ballun, K.J. Dharmaraj, G.E. Cook, A.M. Strauss, J. Manuf. Process. 16, 56–73 (2014). https://doi.org/10.1016/j.jmapro.2013.04.002

    Article  Google Scholar 

  92. S. Sambasivam, N. Gupta, A. Saeed Jassim, D. Pratap Singh, S. Kumar, J. Mohan Giri, M. Gupta, Mater. Today: Proc. (2023). https://doi.org/10.1016/j.matpr.2023.03.304

    Article  Google Scholar 

  93. M. Saleh, Y. Morisada, K. Ushioda, H. Fujii, Mater. Today Commun. 37, 107372 (2023). https://doi.org/10.1016/j.mtcomm.2023.107372

    Article  CAS  Google Scholar 

  94. Y.-H. Zhao, S.-B. Lin, L. Wu, F.-X. Qu, Mater. Lett. 59, 2948–2952 (2005). https://doi.org/10.1016/j.matlet.2005.04.048

    Article  CAS  Google Scholar 

  95. M.A. Fakih, S. Mustapha, J. Tarraf, G. Ayoub, R. Hamade, Mech. Syst. Signal. Pr. 101, 516–534 (2018). https://doi.org/10.1016/j.ymssp.2017.09.003

    Article  Google Scholar 

  96. F. Al-Badour, N. Merah, A. Shuaib, A. Bazoune, J. Mater. Process. Technol. 213, 1433–1439 (2013). https://doi.org/10.1016/j.jmatprotec.2013.02.014

    Article  Google Scholar 

  97. Y. Guo, X. He, C. Liu, C. Wei, R. Yang, X. Dong, J. Manuf. Process. 107, 280–293 (2023). https://doi.org/10.1016/j.jmapro.2023.10.046

    Article  Google Scholar 

  98. M.M.Z. Ahmed, M.M. El-Sayed Seleman, D. Fydrych, G. Çam, J. Magnes. Alloys 11, 4082–4127 (2023). https://doi.org/10.1016/j.jma.2023.09.039

    Article  CAS  Google Scholar 

  99. S. Ji, S. Niu, J. Liu, J. Mater. Sci. Technol. 35, 1712–1718 (2019). https://doi.org/10.1016/j.jmst.2019.03.033

    Article  CAS  Google Scholar 

  100. Z. Ma, Y. Jin, S. Ji, X. Meng, L. Ma, Q. Li, J. Mater. Sci. Technol. 35, 94–99 (2019). https://doi.org/10.1016/j.jmst.2018.09.022

    Article  CAS  Google Scholar 

  101. S. Amini, M.R. Amiri, Int. J. Adv. Manuf. Tech. 73, 127–135 (2014). https://doi.org/10.1007/s00170-014-5806-7

    Article  Google Scholar 

  102. C. Tian, X. Dai, L. Shi, C. Wu, Vacuum 206, 111540 (2022). https://doi.org/10.1016/j.vacuum.2022.111540

    Article  CAS  Google Scholar 

  103. J. Zhao, C. Wu, L. Shi, H. Su, J. Mater. Sci. Technol. 139, 31–46 (2023). https://doi.org/10.1016/j.jmst.2022.08.025

    Article  CAS  Google Scholar 

  104. D. Mizushima, T. Sato, H. Murakami, N. Ohtake, J. Solid Mech. Mater. Eng. 5, 810–824 (2011). https://doi.org/10.1299/jmmp.5.810

    Article  Google Scholar 

  105. F. Heßeln, M.C. Wanner, Adv. Mater. Res. 966–967, 641–650 (2014). https://doi.org/10.4028/www.scientific.net/AMR.966-967.641

    Article  Google Scholar 

  106. A. Schubert, H. Zeidler, S.F. Jahn, S. Flemmig, R. Schulze, Proced. Eng. 69, 1021–1028 (2014). https://doi.org/10.1016/j.proeng.2014.03.085

    Article  Google Scholar 

  107. A. Siddiq, E. Ghassemieh, J. Manuf. Sci. Eng. 131, 041007 (2009). https://doi.org/10.1115/1.3160583

    Article  Google Scholar 

  108. H. Li, B. Cao, J. Liu, J. Yang, Int. J. Adv. Manuf. Tech. 97, 833–844 (2018). https://doi.org/10.1007/s00170-018-2002-1

    Article  Google Scholar 

  109. K. Chen, Y. Zhang, Mater. Des. 87, 393–404 (2015). https://doi.org/10.1016/j.matdes.2015.08.042

    Article  CAS  Google Scholar 

  110. N.A. Muhammad, P. Geng, C. Wu, N. Ma, Int. J. Mach. Tools Manuf. 186, 104004 (2023). https://doi.org/10.1016/j.ijmachtools.2023.104004

    Article  Google Scholar 

  111. L. Shi, C.S. Wu, X.C. Liu, J. Mater. Process. Technol. 222, 91–102 (2015). https://doi.org/10.1016/j.jmatprotec.2015.03.002

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This study was financially supported by the Outstanding Postdoctoral Innovation Talent Project of Hunan Province [Grant No. 2021RC2093], the National Natural Science Foundation of China [Grant No. 51901199, 51975504]

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruitao Peng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Peng, J., Peng, R. et al. Research Status and Prospects of Ultrasonic Vibration-Assisted Joining Technology for Difficult-to-Weld High-Strength Alloys. Met. Mater. Int. (2024). https://doi.org/10.1007/s12540-024-01700-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12540-024-01700-1

Keywords

Navigation