Skip to main content
Log in

Hot Workability and Microstructure Control in Monel K 500 in as Cast Condition: An Approach Using Pressing Maps

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

Monel K500 is a high strength, precipitation hardenable, nickel-copper alloy with additions of Al and Ti, having excellent corrosion resistance and ignition resistance to high pressure gaseous oxygen. However, this alloy is highly sensitive to hot workability and is crack prone during hot deformation. This study investigates the effect of hot workability parameters such as temperature, strain rate, and overall strain on the microstructure evolution. The hot deformability of this alloy was studied using isothermal hot compression tests in the temperature range of 850 °C to 1150 °C and at strain rates ranging from 10− 3 to 10 s− 1, using a Gleeble 3800 thermo-mechanical simulator. The flow behaviour was analysed using stress-strain and strain hardening plots. Initial microstructure of the material has as-cast dendritic structure, while microstructural analysis of hot deformed samples revealed gradual reconstitution with increasing temperature and decreasing strain rate. Hot deformed samples showed traces of recrystallized grains and carbides across the matrix at high temperatures and low strain rates. EBSD GROD mapping further elucidates the variation of microstructural features with variation of strain rate. In accordance with the Ziegler instability criterion, processing maps were constructed for a true strain of 0.65, encompassing deformation temperatures between 850 °C and 1150 °C, and strain rates ranging from 0.001 to 10 s− 1. Through an examination of strain rate sensitivity map, processing map and analysis of deformation activation energy, both undesirable (unstable) and potentially favourable (stable) hot deformation parameters were identified. Instability regions in the processing maps were validated with the microstructural features of deformed samples of cast Monel K500 alloy.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

The raw/processed data required to reproduce these findings cannot be shared at this time as the data also forms part of an ongoing study.

References

  1. A.R. Kannan, S.M. Kumar, R. Pramod, N.S. Shanmugam, M. Vishnukumar, S.G. Channabasavanna, Mater. Lett. 308, 131262 (2022). https://doi.org/10.1016/j.matlet.2021.131262

    Article  CAS  Google Scholar 

  2. K. Sahithya, I. Balasundar, P. Pant, T. Raghu, H.K. Nandi, V. Singh, P. Ghosal, M. Ramakrishna, Mater. Sci. Eng. A 754, 521 (2019). https://doi.org/10.1016/j.msea.2019.03.083

    Article  CAS  Google Scholar 

  3. A.G. Kostryzhev, O.O. Marenych, Z. Pan, H. Li, S. van Duin, J. Mater. Sci. 58, 4150 (2023). https://doi.org/10.1007/s10853-023-08248-2

    Article  CAS  Google Scholar 

  4. N.S. Stoloff, in Microstructure and Properties of Materials, vol. 1, ed by J.C.M. Li (World Scientific, Singapore, 1996), p. 51. https://doi.org/10.1142/9789814261326_0002

  5. X.P. Zhang, W.Z. Chen, Adv. Mater. Res. 712–715, 87 (2013). https://doi.org/10.4028/www.scientific.net/AMR.712-715.87

  6. A.A. Ganeev, V.A. Valitov, F.Z. Utyashev, V.M. Imaev, Phys. Met. Metallogr. 120, 410 (2019). https://doi.org/10.1134/S0031918X19040057

    Article  CAS  Google Scholar 

  7. J.P. Chubb, J. Billingham, Met. Technol. 5, 100 (1978). https://doi.org/10.1179/mt.1978.5.1.100

    Article  CAS  Google Scholar 

  8. P. Liu, R. Zhang, Y. Yuan, C. Cui, Y. Zhou, X. Sun, J. Alloys Compd. 831, 154618 (2020). https://doi.org/10.1016/j.jallcom.2020.154618

    Article  CAS  Google Scholar 

  9. K. Sahithya, I. Balasundar, P. Pant, T. Raghu, J. Alloys Compd. 821, 153455 (2020). https://doi.org/10.1016/j.jallcom.2019.153455

    Article  CAS  Google Scholar 

  10. S.V.S. Narayana Murty, B. Nageswara Rao, B.P. Kashyap, Int. Mater. Rev. 45, 15 (2000). https://doi.org/10.1179/095066000771048782

    Article  Google Scholar 

  11. S.V.S. Narayana Murty, M.S. Sarma, B.N. Rao, Metall. Mater. Trans. A 28, 1581 (1997). https://doi.org/10.1007/s11661-997-0219-y

  12. K.P. Rao, Y.V.R.K. Prasad, in Comprehensive Materials Processing, ed. by S. Hashmi, G.F. Batalha, C.J. Van Tyne, B. Yilbas (Elsevier, Amsterdam, 2014), pp. 397–426. https://doi.org/10.1016/B978-0-08-096532-1.00321-6

  13. Y.V.R.K. Prasad, K.P. Rao, S. Sasidhara (eds.), Hot Working Guide A Compedium of Processing Maps, 2nd edn. (ASM International, Materials Park, 2015), p. 1

  14. H. Ziegler, J. Appl. Math. Mech. 45, 271 (1965). https://doi.org/10.1002/zamm.19650450443

    Article  Google Scholar 

  15. A.P. Mouritz (ed.), in Introduction to Aerospace Materials (Woodhead Publishing, Cambridge, 2012), pp. 57–90. https://doi.org/10.1533/9780857095152.57

  16. C.R. Anoop, R.K. Singh, R.R. Kumar, J. Miyala, S.V.S.N. Murty, K.T. Tharian, Mater. Perform. Charact. 9, 150 (2020). https://doi.org/10.1520/MPC20190081

    Article  CAS  Google Scholar 

  17. E.N. Borodin, A.A. Gruzdkov, A.E. Mayer, N.S. Selyutina, J. Phys. Conf. Ser. 991, 012012 (2018). https://doi.org/10.1088/1742-6596/991/1/012012

    Article  CAS  Google Scholar 

  18. T. Sakai, J.J. Jonas, Acta Metall. 32, 189 (1984). https://doi.org/10.1016/0001-6160(84)90049-X

    Article  CAS  Google Scholar 

  19. G.R. Ebrahimi, A. Momeni, S.M. Abbasi, H. Monajatizadeh, Met. Mater. Int. 19, 11 (2013). https://doi.org/10.1007/s12540-013-1003-8

    Article  CAS  Google Scholar 

  20. N.T.B.N. Koundinya, A.K. Karnati, A. Sahadevan, S.V.S.N. Murty, R.S. Kottada, J. Alloys Compd. 930, 167412 (2023). https://doi.org/10.1016/j.jallcom.2022.167412

    Article  CAS  Google Scholar 

  21. J. Zhang, C. Wu, Y. Peng, X. Xia, J. Li, J. Ding, C. Liu, X. Chen, J. Dong, Y. Liu, J. Alloys Compd. 835, 155195 (2020). https://doi.org/10.1016/j.jallcom.2020.155195

    Article  CAS  Google Scholar 

  22. H. Yuan, W.C. Liu, Mater. Sci. Eng. A 408, 281 (2005). https://doi.org/10.1016/j.msea.2005.08.126

    Article  CAS  Google Scholar 

  23. Z. Jia, X. Sun, J. Ji, Y. Wang, B. Wei, L. Yu, Adv. Eng. Mater. 23, 2001048 (2021). https://doi.org/10.1002/adem.202001048

  24. K. Tang, Z. Zhang, J. Tian, Y. Wu, F. Jiang, J. Alloys Compd. 860, 158541 (2021). https://doi.org/10.1016/j.jallcom.2020.158541

    Article  CAS  Google Scholar 

  25. S.A. Sajadi, M.R. Toroghinejad, A. Rezaeian, G.R. Ebrahimi, J. Alloys Compd. 896, 162732 (2022). https://doi.org/10.1016/j.jallcom.2021.162732

    Article  CAS  Google Scholar 

  26. J. Luan, C. Sun, X. Li, Q. Zhang, Mater. Sci. Technol. 30, 211 (2014). https://doi.org/10.1179/1743284713Y.0000000341

    Article  CAS  Google Scholar 

  27. P. Wanjara, M. Jahazi, H. Monajati, S. Yue, J.-P. Immarigeon, Mater. Sci. Eng. A 396, 50 (2005). https://doi.org/10.1016/j.msea.2004.12.005

    Article  CAS  Google Scholar 

  28. I.N. Ganiev, F.S. Zokirov, M.M. Sangov, N.F. Ibrokhimov, High. Temp. 56, 867 (2018). https://doi.org/10.1134/S0018151X18060093

    Article  CAS  Google Scholar 

  29. P. Wan, H. Zou, K. Wang, Z. Zhao, S. Lu, H. Nie, Metals. 10, 956 (2020). https://doi.org/10.3390/met10070956

    Article  CAS  Google Scholar 

  30. I. Balasundar, K.R. Ravi, T. Raghu, Mater. Sci. Eng. A 684, 135 (2017). https://doi.org/10.1016/j.msea.2016.12.043

    Article  CAS  Google Scholar 

  31. N. Neethu, P. Chakravarthy, Metall. Mater. Trans. A 51, 3398 (2020). https://doi.org/10.1007/s11661-020-05817-x

    Article  CAS  Google Scholar 

  32. Y.V.R.K. Prasad, T. Seshacharyulu, Int. Mater. Rev. 43, 243 (1998). https://doi.org/10.1179/imr.1998.43.6.243

    Article  CAS  Google Scholar 

  33. S.V.S. Narayana Murty, B. Nageswara Rao, B.P. Kashyap, J. Mater. Process. Technol. 166, 268 (2005). https://doi.org/10.1016/j.jmatprotec.2004.09.089

    Article  CAS  Google Scholar 

  34. H.J. McQueen, N.D. Ryan, Mater. Sci. Eng. A 322, 43 (2002). https://doi.org/10.1016/S0921-5093(01)01117-0

  35. Y. Liu, R. Hu, J. Li, H. Kou, H. Li, H. Chang, H. Fu, Mater. Sci. Eng. A 508, 141 (2009). https://doi.org/10.1016/j.msea.2008.12.032

    Article  CAS  Google Scholar 

  36. A.K. Godasu, U. Prakash, S. Mula, J. Alloys Compd. 844, 156200 (2020). https://doi.org/10.1016/j.jallcom.2020.156200

    Article  CAS  Google Scholar 

  37. H. Zhou, H. Zhang, J. Liu, S. Qin, Y. Lv, Rare Met. Mater. Eng. 47, 3329 (2018). https://doi.org/10.1016/s1875-5372(18)30240-6

    Article  CAS  Google Scholar 

  38. C.M. Sellars, W.J. McTegart, Acta Metall. 14, 1136 (1966). https://doi.org/10.1016/0001-6160(66)90207-0

    Article  CAS  Google Scholar 

  39. Y. Lee, M. Nordin, S.S. Babu, D.F. Farson, Metall. Mater. Trans. B 45, 1520 (2014). https://doi.org/10.1007/s11663-014-0054-7

    Article  CAS  Google Scholar 

  40. J. Obiko, IOP SciNotes. 2, 014401 (2021) https://doi.org/10.1088/2633-1357/abdd96

  41. Y.V.R.K. Prasad, S. Sasidhara, V.K. Sikka, Intermetallics. 8, 987 (2000). https://doi.org/10.1016/S0966-9795(00)00048-0

    Article  CAS  Google Scholar 

  42. Y. Li, Y. Guan, H. Chen, J. Zhai, J. Lin, L. Chen, Met. Mater. Int. 27, 4195 (2021). https://doi.org/10.1007/s12540-020-00857-9

    Article  CAS  Google Scholar 

  43. S. Tabaie, D. Shahriari, C. Plouze, A. Devaux, J. Cormier, M. Jahazi, Mater. Sci. Eng. A 766, 138391 (2019). https://doi.org/10.1016/j.msea.2019.138391

  44. M.J. Weis, M.C. Mataya, S.W. Thompson, D.K. Matlock, in Superalloy 718: Metallurgy and Applications: Proceedings of the International Symposium on the Metallurgy and Applications of Superalloy 718, ed. by E.A. Loria (TMS, Pittsburgh, 1989), p. 135. https://doi.org/10.7449/1989/superalloys_1989_135_154

  45. S.S.S. Kumar, T. Raghu, P.P. Bhattacharjee, G.A. Rao, U. Borah, J. Alloys Compd. 709, 394 (2017). https://doi.org/10.1016/j.jallcom.2017.03.158

    Article  CAS  Google Scholar 

  46. H. Xu, Y. Li, H. Li, J. Wang, G. Liu, Y. Song, Metals. 12, 1496 (2022). https://doi.org/10.3390/met12091496

  47. A. Najafizadeh, J.J. Jonas, ISIJ Int. 46, 1679 (2006). https://doi.org/10.2355/isijinternational.46.1679

    Article  CAS  Google Scholar 

  48. M. Al-Saadi, C. Hulme-Smith, F. Sandberg, P.G. Jönsson, J. Mater. Eng. Perform. 30, 7770 (2021). https://doi.org/10.1007/s11665-021-05957-0

    Article  CAS  Google Scholar 

  49. P. Neelima, S.V.S. Narayana Murty, P. Chakravarthy, Mater. Perform. Charact. 9, 237 (2020). https://doi.org/10.1520/MPC20190045

  50. N.R. Jaladurgam, A.K. Kanjarla, Mater. Sci. Eng. A 712, 240 (2018). https://doi.org/10.1016/j.msea.2017.11.056

    Article  CAS  Google Scholar 

  51. D.V. Vaganov, S. Zhevnenko, Defect Diffus. Forum. 249, 115 (2006). https://doi.org/10.4028/www.scientific.net/ddf.249.115

    Article  CAS  Google Scholar 

  52. M.C. Flemings, Solidification processing. Metall. Trans. 5, 2121 (1974). https://doi.org/10.1007/BF02643923

    Article  CAS  Google Scholar 

  53. T.R. Bieler, S.C. Sutton, B.E. Dunlap, Z.A. Keith, P. Eisenlohr, M.A. Crimp, B.L. Boyce, JOM. 66, 121 (2014). https://doi.org/10.1007/s11837-013-0821-y

    Article  CAS  Google Scholar 

  54. L. Despax, V. Vidal, D. Delagnes, M. Dehmas, H. Matsumoto, V. Velay, Mater. Sci. Eng. A 790, 139718 (2020). https://doi.org/10.1016/j.msea.2020.139718

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Director, LPSC for granting permission to publish this work. Support of M/s MIDHANI, Hyderabad is highly appreciated towards realisation and supply of this material.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ravi Ranjan Kumar.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Funding.

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dey, S., Kumar, R.R., Florist, V. et al. Hot Workability and Microstructure Control in Monel K 500 in as Cast Condition: An Approach Using Pressing Maps. Met. Mater. Int. (2024). https://doi.org/10.1007/s12540-024-01693-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12540-024-01693-x

Keywords

Navigation