Skip to main content
Log in

Impact of Controlled Thermal Oxidation on Phase Transition and Tailoring Properties of Sb2S3/Sb2O3 Composites

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

The study investigates the synthesis and characterisation of the Sb2S3/Sb2O3 composite materials through thermal oxidation at 350 °C with varying heating times. The structural, morphology, and electrical behaviours were characterised using XRD, FT-IR, SEM, EDS, UV–Vis spectroscopy, PL, and EIS. The phase transformation from stibnite (Sb2S3) to Sb2O3 phases (senarmontite and valentinite) is observed and discussed. The FT-IR spectra confirm the presence of characteristic Sb–S and Sb–O vibrations. The absorbance spectrum reveals a shift in the energy bandgap (Eg) with values of 1.58–2.23 eV, indicating the compositional changes due to prolonged heating. The emergence of electron donor Sb5+ ions (at 541.36 eV) and Sb3+ (at 540 eV) was investigated in the XPS study. In association, PL emission at 560 nm is attributed to the oxidative transformation of Sb3+ to Sb5+, suggesting the redox transformations within the composite. EIS analysis reveals the fastest interfacial charge-transfer process in the 60 min—heated sample. As a result, the prolonged heating time influences the phase transition and composition, resulting in the properties tailoring of the Sb2S3/Sb2O3 composites.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig.8
Fig.9
Fig.10

Similar content being viewed by others

Data availability

The data presented in this study are available on request from the corresponding author.

References

  1. U. Sarkar, B. Debnath, M. Debbarma, D. Ghosh, S. Chanda, R. Bhattacharjee, S. Chattopadhyaya, Structural, mechanical and optoelectronic features of cubic MgxCd1−xS, MgxCd1−xSe and MgxCd1−xTe semiconductor ternary alloys: theoretical investigations using density functional FP-LAPW approach. Comput. Condens. Matter. 22, e00448 (2020). https://doi.org/10.1016/j.cocom.2019.e00448

  2. I.LJ. Validžić, M. Mitrić, N.D. Abazović, B.M. Jokić, A.S. Milošević, Z.S. Popović, F.R. Vukajlović, Structural analysis, electronic and optical properties of the synthesized Sb2S3 nanowires with small band gap. Semicond. Sci. Technol. 29, 035007 (2014). https://doi.org/10.1088/0268-1242/29/3/035007

    Article  Google Scholar 

  3. R. Almalki, E.M. Mkawi, Y. Al-Hadeethi, Fabricating antimony sulfide Sb2S3 microbars using solvothermal synthesis: effect of the solvents used on the optical, structural, and morphological properties. J. Mater. Sci. Mater. Electron. 31, 9203–9211 (2020). https://doi.org/10.1007/s10854-020-03450-3

    Article  CAS  Google Scholar 

  4. I.L. Validžić, N.D. Abazović, M. Mitrić, Growth of Sb2S3 nanowires synthesized by colloidal process and self-assembly of amorphous spherical Sb2S3 nanoparticles in wires formation. Met. Mater. Int. 18, 989–995 (2012). https://doi.org/10.1007/s12540-012-6010-7

    Article  CAS  Google Scholar 

  5. Y. Zeng, J. Wu, K. Sun, J. Huang, L. Li, C. Sha, Y. Yao, Y. Lai, M. Green, F. Liu, X. Hao, Low-cost fabrication of Sb2S3 solar cells: direct evaporation from raw stibnite ore. Solar RRL 6, 2100843 (2022). https://doi.org/10.1002/solr.202100843

    Article  Google Scholar 

  6. Y. Wang, R. Liang, C. Qin, L. Ren, Z. Ye, L. Zhu, A solution processed Sb2S3-based photocathode with enhanced photocatalytic performanceviaconstructing an ultrathin TiO2 overlayer and noble metal modification. Sustain. Energy Fuels 5, 855–861 (2021). https://doi.org/10.1039/d0se01220c

    Article  CAS  Google Scholar 

  7. X. Lin, H. Deng, Y. Jia, Z. Wu, Y. Xia, X. Wang, S. Chen, Y. Cheng, Q. Zheng, Y. Lai, S. Cheng, Self-powered Sb2S3 thin-film photodetectors with high detectivity for weak light signal detection. ACS Appl. Mater. Interfaces 14, 12385–12394 (2022). https://doi.org/10.1021/acsami.1c25256

    Article  CAS  PubMed  Google Scholar 

  8. F. Alvi, K. Javed, N. Aslam, A. Sattar, L. Sherin, A. Ali, J. Amjad, S.U. Rehman, Structural and optical properties of N-acetyl-l-cysteine capped Sb2S3 quantum dots for LED applications. Opt. Mater. (Amst.) 111, 110559 (2021). https://doi.org/10.1016/j.optmat.2020.110559

    Article  CAS  Google Scholar 

  9. J.J. Carey, J.P. Allen, D.O. Scanlon, G.W. Watson, The electronic structure of the antimony chalcogenide series: prospects for optoelectronic applications. J. Solid State Chem. 213, 116–125 (2014). https://doi.org/10.1016/j.jssc.2014.02.014

    Article  CAS  Google Scholar 

  10. Y. Peng, J. Chen, L.X. Jiang, T.Y. Wang, H.C. Yang, F.Y. Liu, M. Jia, Preparation of Sb2O3/Sb2S3/FeOOH composite photoanodes for enhanced photoelectrochemical water oxidation. Trans. Nonferrous Metals Soc. China (English Edition) 30, 1625–1634 (2020). https://doi.org/10.1016/S1003-6326(20)65325-0

    Article  CAS  Google Scholar 

  11. F. Chen, H. Pan, Z. Lu, X. Huang, Z. Sun, X. Chen, Modulation of photogenerated carrier transport by integration of Sb2O3 with Fe2O3 for improved photoelectrochemical water oxidation. ACS Appl. Energy Mater. 5, 8844–8851 (2022). https://doi.org/10.1021/acsaem.2c01331

    Article  CAS  Google Scholar 

  12. M. Biver, W. Shotyk, Stibiconite (Sb3O6OH), senarmontite (Sb2O3) and valentinite (Sb2O3): dissolution rates at pH 2–11 and isoelectric points. Geochim. Cosmochim. Acta 109, 268–279 (2013). https://doi.org/10.1016/j.gca.2013.01.033

    Article  CAS  Google Scholar 

  13. P.S. Gopalakrishnan, H. Manohar, Kinetics and mechanism of the transformation in antimony trioxide from orthorhombic valentinite to cubic senarmontite. J. Solid State Chem. 15, 61–67 (1975). https://doi.org/10.1016/0022-4596(75)90271-6

    Article  CAS  Google Scholar 

  14. C. Song, N. Zhang, J. Lin, X. Guo, X. Liu, Sb2O3/Ag/Sb2O3 multilayer transparent conducting films for ultraviolet organic light-emitting diode. Sci. Rep. 7, 41250 (2017). https://doi.org/10.1038/srep41250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. G.-H. He, C.-J. Liang, Y.-D. Ou, D.-N. Liu, Y.-P. Fang, Y.-H. Xu, Preparation of novel Sb2O3/WO3 photocatalysts and their activities under visible light irradiation. Mater. Res. Bull. 48, 2244–2249 (2013). https://doi.org/10.1016/j.materresbull.2013.02.055

    Article  CAS  Google Scholar 

  16. K. Terashima, T. Hashimoto, T. Uchino, S.-H. Kim, T. Yoko, Structure and nonlinear optical properties of binary glasses. J. Ceram. Soc. Jpn. 104, 1008–1014 (1996). https://doi.org/10.2109/jcersj.104.1008

    Article  CAS  Google Scholar 

  17. H. Zhang, J. Liu, T. Xu, W. Ji, X. Zong, Recent advances on small band gap semiconductor materials (≤ 2.1 eV) for solar water splitting. Catalysts 13, 728 (2023). https://doi.org/10.3390/catal13040728

    Article  CAS  Google Scholar 

  18. L. Jiang, J. Chen, Y. Wang, Y. Pan, B. Xiao, N. Ouyang, F. Liu, Sb2O3/Sb2S3 heterojunction composite thin film photoanode prepared via chemical bath deposition and post-sulfidation. J. Electrochem. Soc. 165, H1052–H1058 (2018). https://doi.org/10.1149/2.0581816jes

    Article  CAS  Google Scholar 

  19. A. Koochaki-Abkenar, A. Malekan, M. Bozorg, K. Nematipour, Hot Corrosion and oxidation behavior of Pt–aluminide and Pt–Rh–aluminide coatings applied on nickle-base and cobalt-base substrates. Met. Mater. Int. (2024). https://doi.org/10.1007/s12540-024-01653-5

    Article  Google Scholar 

  20. S. Li, Y. Zhang, R. Tang, X. Wang, T. Zhang, G. Jiang, W. Liu, C. Zhu, T. Chen, Aqueous-solution-based approach towards carbon-free Sb2 S3 films for high efficiency solar cells. Chemsuschem 11, 3208–3214 (2018). https://doi.org/10.1002/cssc.201801336

    Article  CAS  PubMed  Google Scholar 

  21. M. Haj Lakhdar, Y.B. Smida, M. Amlouk, Synthesis, optical characterization and DFT calculations of electronic structure of Sb2O3 films obtained by thermal oxidation of Sb2S3. J. Alloys Compd. 681, 197–204 (2016). https://doi.org/10.1016/j.jallcom.2016.04.026

    Article  CAS  Google Scholar 

  22. R. Padilla, A. Aracena, M.C. Ruiza, Kinetics of stibnite (Sb2S3) oxidation at roasting temperatures. J. Min. Metall.Sect. B. 50, 127–132 (2014). https://doi.org/10.2298/JMMB130131012P

    Article  Google Scholar 

  23. M. Vuković, Z. Branković, D. Poleti, A. Rečnik, G. Branković, Novel simple methods for the synthesis of single-phase valentinite Sb2O3. J. Solgel Sci. Technol. 72, 527–533 (2014). https://doi.org/10.1007/s10971-014-3469-3

    Article  CAS  Google Scholar 

  24. Ž Živković, N. Štrbac, D. Živković, D. Grujičić, B. Boyanov, Kinetics and mechanism of Sb2S3 oxidation process. Thermochim. Acta 383, 137–143 (2002). https://doi.org/10.1016/S0040-6031(01)00688-8

    Article  Google Scholar 

  25. H.M. Rietveld, Line profiles of neutron powder-diffraction peaks for structure refinement. Acta Crystallogr. 22, 151–152 (1967). https://doi.org/10.1107/S0365110X67000234

    Article  CAS  Google Scholar 

  26. L. Lutterotti, Maud: a Rietveld analysis program designed for the internet and experiment integration. Acta Crystallogr. A 56, s54–s54 (2000). https://doi.org/10.1107/S0108767300021954

    Article  Google Scholar 

  27. Y. Zhao, J. Zhang, Microstrain and grain-size analysis from diffraction peak width and graphical derivation of high-pressure thermomechanics. J. Appl. Crystallogr. 41, 1095–1108 (2008). https://doi.org/10.1107/S0021889808031762

    Article  CAS  Google Scholar 

  28. H.M. Rietveld, A profile refinement method for nuclear and magnetic structures. J. Appl. Crystallogr. 2, 65–71 (1969). https://doi.org/10.1107/S0021889869006558

    Article  CAS  Google Scholar 

  29. M. Muneeb, B. Ismail, T. Fazal, R.A. Khan, A.M. Khan, M. Bilal, B. Muhammad, A.R. Khan, Water treatment by photodegradation on orthorhombic antimony sulfide powder and effect of key operational parameters using methyl orange as a model pollutant. Arab. J. Chem. 11, 1117–1125 (2018). https://doi.org/10.1016/j.arabjc.2015.05.010

    Article  CAS  Google Scholar 

  30. V. Sharma, P. Ilaiyaraja, A.C. Dakshinamurthy, C. Sudakar, One step thermolysis of Sb-mercaptopropionic acid complex in ambient air atmosphere for growing Sb2S3 thin films with controlled microstructure. Mater. Sci. Semicond. Process. 121, 105330 (2021). https://doi.org/10.1016/j.mssp.2020.105330

    Article  Google Scholar 

  31. J. Xu, B. Ma, L. Niu, C. Xu, Z. Chen, Y. Lin, Study on the flame retardancy of nano-Sb2O3/BPS-PBT composites. Adv. Compos. Lett. 28, 0963693519865743 (2019). https://doi.org/10.1177/0963693519865743

    Article  Google Scholar 

  32. A.E. Ersundu, M. Çelikbilek, M. Baazouzi, M.T. Soltani, J. Troles, S. Aydin, Characterization of new Sb2O3-based multicomponent heavy metal oxide glasses. J. Alloys Compd. 615, 712–718 (2014). https://doi.org/10.1016/j.jallcom.2014.07.024

    Article  CAS  Google Scholar 

  33. J. Yang, Y.C. Liu, H.M. Lin, C.C. Chen, A chain-structure nanotube: growth and characterization of single-crystal Sb2S3 nanotubes via a chemical vapor transport reaction. Adv. Mater. 16, 713–716 (2004). https://doi.org/10.1002/adma.200305757

    Article  CAS  Google Scholar 

  34. A.M. Huerta-Flores, L.M. Torres-Martínez, E. Moctezuma, J.E. Carrera-Crespo, Novel SrZrO3-Sb2O3 heterostructure with enhanced photocatalytic activity: band engineering and charge transference mechanism. J. Photochem. Photobiol. A Chem. 356, 166–176 (2018). https://doi.org/10.1016/j.jphotochem.2017.12.049

    Article  CAS  Google Scholar 

  35. Z. Deng, F. Tang, D. Chen, X. Meng, L. Cao, B. Zou, A simple solution route to single-crystalline Sb2O3 nanowires with rectangular cross sections. J. Phys. Chem. B 110, 18225–18230 (2006). https://doi.org/10.1021/jp063748y

    Article  CAS  PubMed  Google Scholar 

  36. G. Fan, Z. Huang, C. Chai, D. Liao, Synthesis of micro-sized Sb2O3 hierarchical structures by carbothermal reduction method. Mater. Lett. 65, 1141–1144 (2011). https://doi.org/10.1016/j.matlet.2010.09.084

    Article  CAS  Google Scholar 

  37. R. Liu, Y. Li, B. Yao, Z. Ding, Y. Jiang, L. Meng, R. Deng, L. Zhang, Z. Zhang, H. Zhao, L. Liu, Shallow acceptor state in Mg-doped CuAlO2 and its effect on electrical and optical properties: an experimental and first-principles study. ACS Appl. Mater. Interfaces 9, 12608–12616 (2017). https://doi.org/10.1021/acsami.7b01354

    Article  CAS  PubMed  Google Scholar 

  38. G. Burns, Solid State Physics (Academic Press, New York, 1985)

    Google Scholar 

  39. J.P. Allen, J.J. Carey, A. Walsh, D.O. Scanlon, G.W. Watson, Electronic structures of antimony oxides. J. Phys. Chem. C 117, 14759–14769 (2013). https://doi.org/10.1021/jp4026249

    Article  CAS  Google Scholar 

  40. Q. Chen, B. Miao, Q. Ma, Sb2O3 functionalized plasmon, photoluminescence and Faraday rotation in glass. J. Non Cryst. Solids 545, 120251 (2020). https://doi.org/10.1016/j.jnoncrysol.2020.120251

    Article  CAS  Google Scholar 

  41. L. Tan, A. Tang, Y. Zou, M. Long, Y. Zhang, J. Ouyang, J. Chen, Sb2Se3 assembling Sb2O3@ attapulgite as an emerging composites for catalytic hydrogenation of p-nitrophenol. Sci. Rep. 7, 3281 (2017). https://doi.org/10.1038/s41598-017-03281-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. K. Syed, N. Krstulović, J. Casanova-Cháfer, E. Llobet, F. Güell, P.R. Martínez-Alanis, M. Marciuš, E. Shagieva, D. Ristić, H. Gebavi, N. Baran, M. Ivanda, The role of the pulsed laser deposition in different growth atmospheres on the gas-sensing properties of ZnO films. Sens. Actuat. B Chem. 382, 133454 (2023). https://doi.org/10.1016/j.snb.2023.133454

    Article  CAS  Google Scholar 

  43. S. Murugan, S. Niesen, J. Kappler, K. Küster, U. Starke, M.R. Buchmeiser, Ultra-stable cycling of high capacity room temperature sodium-sulfur batteries based on sulfurated poly(acrylonitrile). Batter Supercaps. 4, 1636–1646 (2021). https://doi.org/10.1002/batt.202100125

    Article  CAS  Google Scholar 

  44. S. Wang, F. Zheng, Y. Weng, G. Yuan, L. Fang, L. You, Enhanced photoelectrochemical performance by interface engineering in ternary g-C3N4/TiO2/PbTiO3 films. Adv. Mater. Interfaces 7, 2000185 (2020). https://doi.org/10.1002/admi.202000185

    Article  CAS  Google Scholar 

  45. G. Mestl, P. Ruiz, B. Delmon, H. Knozinger, Sb2O3/Sb2O4 in reducing/oxidizing environments: an in situ Raman spectroscopy study. J. Phys. Chem. 98, 11276–11282 (1994). https://doi.org/10.1021/j100095a008

    Article  CAS  Google Scholar 

  46. J. Varghese, R. Vinodkumar, Effect of CuO on the photoluminescence quenching and photocatalytic activity of ZnO multilayered thin films prepared by sol-gel spin coating technique. Mater. Res. Express. 6, 106405 (2019). https://doi.org/10.1088/2053-1591/ab3596

    Article  CAS  Google Scholar 

  47. F. Yang, J. Xi, L.-Y. Gan, Y. Wang, S. Lu, W. Ma, F. Cai, Y. Zhang, C. Cheng, Y. Zhao, Improved charge transfer and photoelectrochemical performance of CuI/Sb2S3/TiO2 heterostructure nanotube arrays. J. Colloid Interface Sci. 464, 1–9 (2016). https://doi.org/10.1016/j.jcis.2015.11.004

    Article  CAS  PubMed  Google Scholar 

  48. Y. Keereeta, S. Thongtem, T. Thongtem, Enhanced photocatalytic degradation of methylene blue by WO3/ZnWO4 composites synthesized by a combination of microwave-solvothermal method and incipient wetness procedure. Powder Technol. 284, 85–94 (2015). https://doi.org/10.1016/j.powtec.2015.06.046

    Article  CAS  Google Scholar 

  49. X. Li, X. Wang, X. Ning, J. Lei, J. Shao, W. Wang, Y. Huang, B. Hou, Sb2S3/Sb2O3 modified TiO2 photoanode for photocathodic protection of 304 stainless steel under visible light. Appl. Surf. Sci. 462, 155–163 (2018). https://doi.org/10.1016/j.apsusc.2018.08.108

    Article  CAS  Google Scholar 

  50. G. Xu, S. Ji, C. Miao, G. Liu, C. Ye, Effect of ZnS and CdS coating on the photovoltaic properties of CuInS 2-sensitized photoelectrodes. J. Mater. Chem. 22, 4890–4896 (2012). https://doi.org/10.1039/c2jm15908b

    Article  CAS  Google Scholar 

  51. C. Feng, W. Wang, X. Chen, S. Wang, Z. Guo, Synthesis and electrochemical properties of ZnMn2O4 anode for lithium-ion batteries. Electrochim. Acta 178, 847–855 (2015). https://doi.org/10.1016/j.electacta.2015.08.070

    Article  CAS  Google Scholar 

  52. C. Feng, Q. Li, L. Li, Different synthesis of Mn x Co y Ni z CO3 microspheres as new anode material for lithium ion battery. J. Mater. Sci. Mater. Electron. 29, 3992–3998 (2018). https://doi.org/10.1007/s10854-017-8341-0

    Article  CAS  Google Scholar 

  53. J. Sun, Y. Liu, Unique constant phase element behavior of the electrolyte–graphene interface. Nanomaterials 9, 923 (2019). https://doi.org/10.3390/nano9070923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Unit of Excellence on Advanced Nanomaterials, the Advanced Glass and Ceramics Research Unit, the Scientific Instrument and Product Standard Quality Inspection Center (SIPQC), the School of Energy and Environment, University of Phayao and the School of Renewable Energy and Smart Grid Technology, Naresuan University for general support to this work. This work was funded by the School of Science, University of Phayao (Grant No. PBTSC64027) and Thailand Science Research and Innovation Fund through the University of Phayao (FF67).

Author information

Authors and Affiliations

Authors

Contributions

Arrak Klinbumrung contributed to the study's conception and design. All authors performed the experiments. Chatkaew Chailuecha and Arrak Klinbumrung achieved analysis and data interpretation. The manuscript was drafted by Chatkaew Chailuecha and Arrak Klinbumrung, and revised and edited for important intellectual content by Arrak Klinbumrung. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Arrak Klinbumrung.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chailuecha, C., Sirirak, R., Suriwong, T. et al. Impact of Controlled Thermal Oxidation on Phase Transition and Tailoring Properties of Sb2S3/Sb2O3 Composites. Met. Mater. Int. (2024). https://doi.org/10.1007/s12540-024-01692-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12540-024-01692-y

Keywords

Navigation