Skip to main content
Log in

Effect of Laser Beam Oscillation Process on the Interlaminar Region of Inconel 625 Alloy Thin-Walled Structure Fabricated by Oscillating Laser Additive Manufacturing

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

In the multilayer thin-walled Inconel 625 alloy structures fabricated by the laser additive manufacturing (LAM) process, the poor plasticity of the interlaminar region often leads to structural fractures. In this paper, an oscillating LAM (O-LAM) technology using a transverse linear beam oscillation (LBO) process was proposed, and the effect of laser scanning speed on the forming accuracy, microstructure, crystallographic texture, and mechanical properties of interlaminar region was studied. The results show that the LBO process refined the grains and increased the number and length of high-angle grain boundaries in the interlaminar region. In addition, the LBO process with high laser scanning speed weakened the preferential orientation along the directions of laser scanning and deposition build-up. In particular, the dominant crystallographic textures of {\(\overline{1 }10\)} <\(\overline{1 }\overline{1 }1\)> and {\(\overline{2 }21\)} <\(\overline{1 }\overline{1 }0\)> in the interlaminar region were significantly reduced. The analysis of the Schmidt factor and the results of nano-indentation test show that the LBO process with high laser scanning speed reduced the stress concentration, and the elastic modulus and dislocation density in the interlaminar region. Therefore, the LBO process with high laser scanning speed can improve the plasticity and relieve the stress concentration of the interlaminar region, which is conducive to improving the overall mechanical properties of the Inconel 625 alloy multilayer thin-walled structure.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data Availability

The data used to support the findings of this study are available from the corresponding author upon request.

References

  1. L.E. Murr, S.M. Gaytan, D.A. Ramirez, E. Martinez, J. Hernandez, K.N. Amato, P.W. Shindo, F.R. Medina, R.B. Wicker, Metal fabrication by additive manufacturing using laser and electron beam melting technologies. J. Mater. Sci. Technol. 28(1), 1–14 (2012)

    Article  CAS  Google Scholar 

  2. A. Günen, T. Lindner, M.S. Karakas, E. Kanca, G. Toberling, S. Vogt, M.S. Gok, T. Lampke, Effect of the boriding environment on the wear response of laser-clad AlCoCrFeNi high entropy alloy coatings. Surf. Coat. Tech. 447, 128830 (2022)

    Article  Google Scholar 

  3. I.J. Solomon, P. Sevvel, J. Gunasekaran, P. Tanushkumaar, A review on additive manufacturing of alloys using laser metal deposition. Mater. Today Proc. 64, 44–50 (2022)

    Article  CAS  Google Scholar 

  4. F. Bayata, A.T. Alpas, The high temperature wear mechanisms of iron-nickel steel (NCF 3015) and nickel based superalloy (Inconel 751) engine valves. Wear 480–481, 203943 (2021)

    Article  Google Scholar 

  5. E.M. Breinan, B.H. Kear, Rapid solidification laser processing at high power density. Mater. Proc. Theory Pract. 3, 235–295 (1983)

    CAS  Google Scholar 

  6. C. Li, R. White, X.Y. Fang, M. Weaver, Y.B. Guo, Microstructure evolution characteristics of Inconel 625 alloy from selective laser melting to heat treatment. Mater. Sci. Eng. A 705, 20–31 (2017)

    Article  CAS  Google Scholar 

  7. G. Gong, J. Ye, Y. Chi, Z. Zhao, Z. Wang, G. Xia, X. Du, H. Tian, H. Yu, C. Chen, Research status of laser additive manufacturing for metal: a review. J. Mater. Res. Technol. 15, 855–884 (2021)

    Article  CAS  Google Scholar 

  8. R. Li, G. Wang, X. Zhao, F. Dai, C. Huang, M. Zhang, X. Chen, H. Song, H. Zhang, Effect of path strategy on residual stress and distortion in laser and cold metal transfer hybrid additive manufacturing. Addit. Manuf. 46, 102203 (2021)

    Google Scholar 

  9. K. Zhang, J. Geng, W. Liu, W. Wang, H. Wang, X. Jiang, H. Bian, Influences of scanning strategy on the quality, accuracy, microstructure and performance of Inconel 625 parts by LAM. J. Mater. Res. Technol. 26, 1962–1983 (2023)

    Article  CAS  Google Scholar 

  10. P. Wang, H.C. Li, K.G. Prashanth, J. Eckert, S. Scudino, Selective laser melting of Al–Zn–Mg–Cu: heat treatment, microstructure and mechanical properties. J. Alloys Compd. 707, 287–290 (2017)

    Article  CAS  Google Scholar 

  11. M.C. Lam, S.C.V. Lim, H. Song, Y. Zhu, X. Wu, A. Huang, Scanning strategy induced cracking and anisotropic weakening in grain texture of additively manufactured superalloys. Addit. Manuf. 52, 102660 (2022)

    CAS  Google Scholar 

  12. D. Kumar, G. Shankar, K.G. Prashanth, S. Suwas, Texture dependent strain hardening in additively manufactured stainless steel 316L. Mater. Sci. Eng. A 820, 141483 (2021)

    Article  CAS  Google Scholar 

  13. C. Li, Y.B. Guo, J.B. Zhao, Interfacial phenomena and characteristics between the deposited material and substrate in selective laser melting Inconel 625. J. Mater. Proc. Technol. 243, 269–281 (2017)

    Article  CAS  Google Scholar 

  14. Y.L. Hu, X. Lin, X.B. Yu, J.J. Xu, M. Lei, W.D. Huang, Effect of Ti addition on cracking and microhardness of Inconel 625 during the laser solid forming processing. J. Alloys Compd. 711, 267–277 (2017)

    Article  CAS  Google Scholar 

  15. Z. Jiang, X. Chen, K. Yu, Z. Lei, Y. Chen, S. Wu, Z. Li, Improving fusion zone microstructure inhomogeneity in dissimilar-metal welding by laser welding with oscillation. Mater. Lett. 261, 126995 (2020)

    Article  CAS  Google Scholar 

  16. F. Yan, Y. Qin, B. Tang, Y. Zhou, Z. Gao, Y. Hu, C. Hu, Z. Xiao, Z. Xiao, C. Wang, Effects of beam oscillation on microstructural characteristics and mechanical properties in laser welded steel-copper joints. Opt. Laser Technol. 148, 107739 (2022)

    Article  Google Scholar 

  17. H. Yang, G. Jing, P. Gao, Z. Wang, X. Li, Effects of circular beam oscillation technique on formability and solidification behaviour of selective laser melted Inconel 718: from single tracks to cuboid samples. J. Mater. Sci. Technol. 51, 137–150 (2020)

    Article  CAS  Google Scholar 

  18. F. Yang, X. Guo, X. Yao, G. Xia, P. Chen, M. Yan, Y. Long, The effect of beam oscillation on laser welding of AA2219-T87 under subatmospheric pressure. Opt. Laser Technol. 148, 107782 (2022)

    Article  CAS  Google Scholar 

  19. M. Gao, H. Wang, K. Hao, H. Mu, X. Zeng, Evolutions in microstructure and mechanical properties of laser lap welded AZ31 magnesium alloy via beam oscillation. J. Manuf. Process. 45, 92–99 (2019)

    Article  Google Scholar 

  20. J. Li, Q. Sun, Y. Liu, Z. Zhen, Q. Sun, J. Feng, Melt flow and microstructural characteristics in beam oscillation superimposed laser welding of 304 stainless steel. J. Manuf. Processs. 50, 629–637 (2020)

    Article  Google Scholar 

  21. C. Chen, X. Yin, W.Liao, Y. Xiang, M. Gao, Y. Zhang, Microstructure and properties of 6061/2A12 dissimilar aluminum alloy weld by laser oscillation scanning. J. Mater. Res. Technol. 14, 2789–2798 (2021)

    Article  CAS  Google Scholar 

  22. C. Chen, W. Wang, D. Li, Y. Cai, Y. Zhang, K. Zhang, Effect of beam oscillation on microstructure and properties of laser-TIG hybrid welding of D406A ultra-high strength steel. J. Manuf. Process. 57, 798–805 (2020)

    Article  Google Scholar 

  23. S. Yan, Z. Meng, B. Chen, C. Tan, X. Song, G. Wang, Prediction of temperature field and residual stress of oscillation laser welding of 316LN stainless steel. Opt. Laser Technol. 145, 107493 (2022)

    Article  CAS  Google Scholar 

  24. Y. Cai, Y. Luo, F. Zhang, Y. Peng, T. Yang, J. Liu, Study of the microstructure and mechanical properties in multilayered structures created by laser-PTA additive manufacturing. Mater. Sci. Eng. A 830, 142299 (2022)

    Article  CAS  Google Scholar 

  25. S. Li, G. Mi, C. Wang, A study on laser beam oscillating welding characteristics for the 5083 aluminum alloy: morphology, microstructure and mechanical properties. J. Manuf. Process. 53, 12–20 (2020)

    Article  Google Scholar 

  26. M. Sauzay, Influence of crystalline elasticity anisotropy on schmidt factor distribution at the free surface of polycrystals. C. R. Mec. 334, 353–361 (2006)

    Google Scholar 

  27. U.F. Kocks, H. Mecking, Physics and phenomenology of strain hardening: the FCC case. Prog. Mater. Sci. 48, 171–273 (2003)

    Article  CAS  Google Scholar 

  28. D. Zhou, D. Zuo, X. Wen, W. Liang, F. Yang, Through-thickness texture gradient and microhardness of cold-rolled AA6061. Mater. Res. Express 5, 066521 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Natural Science Foundation Project of Chongqing Science and Technology Bureau of China (Grant No. cstc2021jcyj-msxmX0189), Science and Technology Research Program of Chongqing Municipal Education Commission of China (Grant No. KJZD-M202001102).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Luo.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, F., Luo, Y., Yang, S. et al. Effect of Laser Beam Oscillation Process on the Interlaminar Region of Inconel 625 Alloy Thin-Walled Structure Fabricated by Oscillating Laser Additive Manufacturing. Met. Mater. Int. (2024). https://doi.org/10.1007/s12540-024-01660-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12540-024-01660-6

Keywords

Navigation