Skip to main content
Log in

Modelling of Meniscus Behavior and Slag Consumption During Initial Casting Stage of Continuous Casting Process

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

The behavior of the meniscus region is crucial to the surface quality of continuous cast steel. A two-dimensional model was developed to study the evolution of the meniscus region during the initial casting stage of continuous casting process. The flow of multiphase fluids, transient heat transfer, melting and re-solidification of slag, and the solidification process of the steel shell were also considered in the model. The calculated results show a good agreement with experimental data of previous literature, which demonstrates the reliability of the model in predicting the behavior of the meniscus region. After the start of withdrawal, liquid slag infiltrates into the gaps, forming a slag layer structure composed of liquid slag films and solid slag films between the shell and the mold. As the distribution of each phase approaches stability, the initial shape of the meniscus was established. During the initial casting stage, as the casting speed increases, the curvature of the meniscus increases, accompanied by an elevated level of heat transfer within the meniscus region. Furthermore, from the perspective of the associated heat transfer and fluid flow variations during the increase in casting speed, the reasons for the decrease of the depth of the oscillation mark and the slag consumption are explained. This study provides new insights into the continuous and complex flow and heat transfer behavior within the meniscus region during the initial casting stage of continuous casting process.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

Abbreviations

\(\overline{v}\) :

Mean velocity vector (m s1)

\(\overline{p}\) :

Mean pressure (Pa)

v T :

Turbulent Kinematic Viscosity (m2 s1)

g :

Gravity vector (m s2)

ρ :

Density of the mixtured (kg m3)

F σ :

Surface tension (N m1)

S mush :

Sink term (m s3)

S k :

A user defined source term (kg m1 s3)

G k :

Generation of turbulent kinetic energy (kg m1 s3)

Y k :

Dissipation of turbulent kinetic energy (kg m1 s3)

Γ k :

Effective diffusivity of the turbulent kinetic energy (kg m1 s1)

Γ w :

Effective diffusivity of the specific dissipation (kg m1 s1)

T fsol :

Temperature chosen to fit the power law to experimental viscosity data (K)

Y w :

Dissipation of the specific dissipation (kg m3 s2)

S w :

A user defined source term (kg m3 s2)

ρ p :

Density of the steel phase (kg m3)

ɑ q :

Volume fraction in the cell in the steel phase

ρ q :

Density of the slag phase (kg m3)

ɑ p :

Volume fraction in the cell in the slag phase

S ɑ q :

A source term

T sol :

Solidus temperature (K)

T liq :

Liquidus temperature (K)

H :

Enthalpy in a given cell (J kg1 K1)

H :

Sensible enthalpy (J kg1 K1)

∆H :

Latent heat (J kg1 K1)

L :

Latent heat of the material (J kg1 K1)

A mush :

Mushy parameter

K :

Thermal Conductivity (W m1 K1)

\(\varphi\) :

Represents the turbulence parameter

v c :

Casting speed (m s1)

ρ slag :

Density of the slag (kg m3)

ρ steel :

Density of the steel (kg m3)

Y :

Height of domain (mm)

Y Fe :

Steel surface level (mm)

S t :

Stroke (mm)

v m :

Velocity of mold (m s1)

p m :

Position of mold (mm)

f :

Frequency (Hz)

k f :

Fluid thermal conductivity

k a :

Solid thermal conductivity (W m1 K1)

T f :

The temperature of fluid (K)

T s :

The temperature of solid (K)

µ 0 :

Reference viscosity of slag at T0 (Pa s)

µ :

Dynamic viscosity (Pa s)

G w :

Generation of specific dissipation (kg m3 s2)

T 0 :

Reference Temperature

S :

Shell thickness (mm)

K :

Solidification factor (mm s2)

P(x) :

Distribution of axial pressure (Pa)

T f,sol :

Solidus temperature of slag (K)

T m :

Temperature of mold hot face (K)

q f :

Heat flux (MW m2)

A OM :

The area of oscillation mark (m2)

R f :

Thermal resistance (m2 K W1)

q OM :

Oscillation mark consumption (kg m2)

q lub :

Lubrication consumption (kg m2)

q OM :

Oscillation mark consumption (kg m2)

q tol :

Total consumption (kg m2)

A OM :

The area of oscillation mark (m2)

k f :

Slag thermal conductivity (W m1 K1)

References

  1. E. Takeuchi, Initial solidification phenomena in the continuous casting slab mould, Ph.D. Thesis, University of British Columbia (1984)

  2. S. Harada, S. Tanaka, H. Misumi, S. Mizoguchi, H. Horiguchi, ISIJ Int. 30, 310–316 (1990). https://doi.org/10.2355/isijinternational.30.310

    Article  CAS  Google Scholar 

  3. S. Mazumdar, S.K. Ray, Sadhana 26, 179–198 (2001). https://doi.org/10.1007/BF02728485

    Article  CAS  Google Scholar 

  4. H. Fredriksson, J. Elfsberg, Scand. J. Metall. 31, 292–297 (2002). https://doi.org/10.1034/j.1600-0692.2002.00519.x

    Article  CAS  Google Scholar 

  5. K.C. Mills, P. Ramirez-Lopez, P.D. Lee, B. Santillana, B.G. Thomas, R. Morales, Ironmak. Steelmak. 41, 242–249 (2014). https://doi.org/10.1179/0301923313Z.000000000255

    Article  CAS  Google Scholar 

  6. K.C. Mills, A.B. Fox, ISIJ Int. 43, 1479–1486 (2003). https://doi.org/10.2355/isijinternational.43.1479

    Article  CAS  Google Scholar 

  7. J. Savage, W.H. Pritchard, Trans. Iron Steel Inst. Jpn. 178, 269–277 (1954)

    Google Scholar 

  8. R.B. Mahapatra, J.K. Brimacombe, I.V. Samarasekera, N. Walker, E.P. Paterson, J.D. Young, Metall. Mater. Trans. B 22, 861–874 (1991). https://doi.org/10.1007/BF02651163

    Article  ADS  Google Scholar 

  9. J.K. Park, I.V. Samarasekera, B.G. Thomas, Metall. Mater. Trans. B 33, 425–436 (2002). https://doi.org/10.1007/s11663-002-0054-x

    Article  Google Scholar 

  10. D. Gupta, A.K. Lahiri, Metall. Mater. Trans. B 27, 757–764 (1996). https://doi.org/10.1007/BF02915604

    Article  Google Scholar 

  11. X. Jin, D.F. Chen, X. Xie, J.L. Shen, M.J. Long, Steel Res. Int. 84, 31–39 (2013). https://doi.org/10.1002/srin.201200076

    Article  CAS  Google Scholar 

  12. Y. Chen, L.F. Zhang, S.F. Yang, J.S. Li, JOM 64, 1080–1086 (2012). https://doi.org/10.1007/s11837-012-0416-z

    Article  CAS  Google Scholar 

  13. C.A. Muojekwu, I.V. Samarasekera, J.K. Brimacombe, Metall. Mater. Trans. B 26, 361–382 (1995). https://doi.org/10.1007/BF02660979

    Article  Google Scholar 

  14. H. Mizuno, H. Esaka, K. Shinozuka, M. Taamura, ISIJ Int. 48, 270–276 (2008). https://doi.org/10.2355/isijinternational.48.270

    Article  CAS  Google Scholar 

  15. D. Bouchard, F.G. Hamel, J.P. Nadeau, Metall. Mater. Trans. B 32, 111–118 (2001). https://doi.org/10.1007/s11663-001-0013-y

    Article  Google Scholar 

  16. M. Suzuki, Y. Yamaoka, Mater. Trans. 44, 836–844 (2003). https://doi.org/10.2320/matertrans.44.836

    Article  CAS  Google Scholar 

  17. H. Zhang, W. Wang, Metall. Mater. Trans. B 47, 920–931 (2016). https://doi.org/10.1007/s11663-015-0579-4

    Article  CAS  Google Scholar 

  18. E.Y. Ko, J. Choi, J.Y. Park, Met. Mater. Int. 20, 141–151 (2014). https://doi.org/10.1007/s12540-014-1017-x

    Article  CAS  Google Scholar 

  19. K. Blazek, I. Saucedo, H. Tsai, Steelmak. Conf. Proc 71, 411 (1988)

    CAS  Google Scholar 

  20. A. Badri, T.T. Natarajan, C.C. Snyder, Metall. Mater. Trans. B 36, 355–371 (2005). https://doi.org/10.1007/s11663-005-0065-5

    Article  Google Scholar 

  21. A. Badri, T.T. Natarajan, C.C. Snyder, Metall. Mater. Trans. B 36, 373–383 (2005). https://doi.org/10.1007/s11663-005-0066-4

    Article  Google Scholar 

  22. H. Zhang, W. Wang, L. Zhou, Metall. Mater. Trans. B 46, 2137–2152 (2015). https://doi.org/10.1007/s11663-015-0418-7

    Article  CAS  Google Scholar 

  23. P. Lyu, W. Wang, H. Zhang, Metall. Mater. Trans. B 48, 247–259 (2017). https://doi.org/10.1007/s11663-016-0853-0

    Article  CAS  Google Scholar 

  24. E. Takeuchi, J.K. Brimacombe, Metall. Mater. Trans. B 15, 493–509 (1984). https://doi.org/10.1007/BF02657380

    Article  ADS  Google Scholar 

  25. K. Schwerdtfeger, H. Sha, Metall. Mater. Trans. B 31, 813–826 (2000). https://doi.org/10.1007/s11663-000-0118-8

    Article  Google Scholar 

  26. Y. Meng, B.G. Thomas, Metall. Mater. Trans. B 34, 685–705 (2003). https://doi.org/10.1007/s11663-003-0040-y

    Article  Google Scholar 

  27. B.G. Thomas, Q. Yuan, B. Zhao, JOM 58, 16–36 (2006). https://doi.org/10.1007/BF02748488

    Article  Google Scholar 

  28. Y. Meng, B.G. Thomas, Metall. Mater. Trans. B 34, 707–725 (2003). https://doi.org/10.1007/s11663-003-0041-x

    Article  Google Scholar 

  29. P.E. Ramirez-Lopez, P.D. Lee, K.C. Mills, ISIJ Int. 50, 1797–1804 (2010). https://doi.org/10.2355/isijinternational.50.1797

    Article  CAS  Google Scholar 

  30. P.E. Ramirez-Lopez, K.C. Mills, P.D. Lee, Metall. Mater. Trans. B 43, 109–122 (2012). https://doi.org/10.1007/s11663-011-9583-5

    Article  CAS  Google Scholar 

  31. A. Jonayat, B.G. Thomas, Metall. Mater. Trans. B 45, 1842–1864 (2014). https://doi.org/10.1007/s11663-014-0097-9

    Article  CAS  Google Scholar 

  32. J. Yang, X. Meng, M. Zhu, ISIJ Int. 58, 2071–2078 (2018). https://doi.org/10.2355/isijinternational.ISIJINT-2018-169

    Article  CAS  Google Scholar 

  33. P.D. Lee, P.E. Ramirez-Lopez, K.C. Mills, Ironmak. Steelmak. 39, 244–253 (2012). https://doi.org/10.1179/0301923312Z.00000000062

    Article  CAS  Google Scholar 

  34. J.U. Brackbill, D.B. Kothe, C. Zemach, J. Comput. Phys. 100, 335–354 (1992). https://doi.org/10.1016/0021-9991(92)90240-Y

    Article  ADS  MathSciNet  CAS  Google Scholar 

  35. F.R. Menter, AIAA J. 32, 1598–1605 (1994). https://doi.org/10.2514/3.12149

    Article  ADS  Google Scholar 

  36. M. Bobadilla, J.M. Jolivet, J.Y. Lamant, M. Larrecq, Mater. Sci. Eng. A 173, 275–285 (1993). https://doi.org/10.1016/0921-5093(93)90229-8

    Article  Google Scholar 

  37. Y. Meng, B.G. Thomas, ISIJ Int. 46, 660–669 (2006). https://doi.org/10.2355/isijinternational.46.660

    Article  CAS  Google Scholar 

  38. H.J. Shin, S.H. Kim, B.G. Thomas, ISIJ Int. 46, 1635–1644 (2006). https://doi.org/10.2355/isijinternational.46.1635

    Article  CAS  Google Scholar 

  39. R. Taylor, K.C. Mills, Ironmak. Steelmak. 15, 187–194 (1988)

    CAS  Google Scholar 

  40. R.M. McDavid, B.G. Thomas, Metall. Mater. Trans. B 27, 672–685 (1996). https://doi.org/10.1007/BF02915666

    Article  Google Scholar 

  41. M. Kishimoto, M. Maeda, M. Hanao, H. Kikuchi, T. Watanabe, Ironmak. Steelmak. 29, 199–202 (2013). https://doi.org/10.1179/030192302225004151

    Article  CAS  Google Scholar 

  42. K. Mills, A. Olusanya, R. Brooks, R. Morrell, S. Bagha, Ironmak. Steelmak. 15, 257–264 (1988)

    Google Scholar 

  43. Y. Feng, W. Wang, Q. He, S. Luo, M. Zhu, Steel Res. Int. 87, 859–870 (2016). https://doi.org/10.1002/srin.201500242

    Article  CAS  Google Scholar 

  44. K.C. Mills, P.E. Ramirez-Lopez, P.D. Lee, High Temp. Mater. Processes 31, 221–229 (2013). https://doi.org/10.1515/htmp-2012-0028

    Article  ADS  CAS  Google Scholar 

  45. A. Matsushita, K. Isogami, M. Temma, T. Ninomiya, K. Tsutsumi, Trans. Iron Steel Inst. Jpn. 28, 531–534 (1988). https://doi.org/10.2355/isijinternational1966.28.531

    Article  Google Scholar 

  46. M. Wolf, Steelmak. Conf. Proc 75, 83–137 (1992)

    CAS  Google Scholar 

  47. M. Suzuki, H. Mizukami, T. Kitagawa, K. Kawakami, S. Uchida, M. Komatsu, ISIJ Int. 31, 254–261 (1991). https://doi.org/10.2355/isijinternational.31.254

    Article  Google Scholar 

  48. H. Yasunaka, K. Nakayama, K. Ebina, T. Saito, M. Kimura, H. Matuda, Tetsu-to-Hagané 81, 894–899 (1995). https://doi.org/10.2355/tetsutohagane1955.81.9_894

    Article  CAS  Google Scholar 

  49. H. Takeuchi, S. Matsumura, R. Hidaka, Y. Nagano, Y. Suzuki, Tetsu-to-Hagané 69, 248–253 (1983). https://doi.org/10.2355/tetsutohagane1955.69.2_248

    Article  Google Scholar 

  50. R. Bommaraju, T. Jackson, J. Lucas, Ironmak. Steelmak. 19, 21–26 (1992)

    CAS  Google Scholar 

  51. A. Swain, S. Ganguly, A. Sengupta, E. Chacko, S. Dhakate, P.K. Pandey, Met. Mater. Int. 28, 2434–2447 (2022). https://doi.org/10.1007/s12540-021-01135-y

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support of National Key Research and Development Plan (No. 2021YFB3702000) and National Natural Science of China (Nos. 52074076, 52174306 and U20A20272) and Fundamental Research Funds for the Central Universities (No. N2225023).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sen Luo or Miaoyong Zhu.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing fnancial interests or personal relationships that could have appeared to infuence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tong, W., Luo, S., Wang, W. et al. Modelling of Meniscus Behavior and Slag Consumption During Initial Casting Stage of Continuous Casting Process. Met. Mater. Int. (2024). https://doi.org/10.1007/s12540-024-01629-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12540-024-01629-5

Keywords

Navigation