Skip to main content
Log in

Microstructure-controlled Electrodeposition of Mechanically Reliable Double-layered Thin Foils for Secondary Batteries

  • Published:
Metals and Materials International Aims and scope Submit manuscript

A Correction to this article was published on 28 January 2024

This article has been updated

Abstract

We investigated an electrodeposition technique for fabricating a high-strength thin metallic foil as a current collector material in secondary batteries. To increase the strength and minimize the increase in electrical resistivity, copper–nickel (Cu–Ni) double-layered foils were considered and the grain structures of each layer were manipulated by controlling the electrodeposition solution and process conditions. Initially, a Cu electrodeposition process was developed to form a bamboo-like grain structure after annealing, which was followed by two Ni processes to produce a foil with a columnar or nano-crystalline grain structure. Subsequently, several foils were annealed at 190 °C for 10 min considering that current collectors experience a thermal load during battery manufacturing. Scanning and transmission electron microscopy-based crystallographic orientation mapping techniques indicated a remarkable change in the grain structure of the Cu foil owing to the grain growth after annealing; conversely, the Ni foil with the nano-crystalline grain structure was insensitive to annealing. By applying these processes to each material, four 10-µm-thick double-layered foils were fabricated. Among these foils, the foil with a nano-crystalline Ni layer exhibited the smallest change in material properties resulting in the highest tensile strength and moderate elongation after annealing. The tensile strength of the best double-layered foil was approximately three-fold higher than that of the single-layered Cu foil after annealing.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data Availability

All data and materials support our published claims and comply with field standards.

Code Availability

All software applications or custom codes support our published claims and comply with field standards.

Change history

References

  1. J.M. Tarascon, M. Armand, Nature 414, 359 (2001). https://doi.org/10.1038/35104644

    Article  CAS  PubMed  Google Scholar 

  2. L. Guo, D.B. Thornton, M.A. Koronfel, I.E. Stephens, M.P. Ryan, J. Phys. Energy 3, 032015 (2021). https://doi.org/10.1088/2515-7655/ac0c04

    Article  CAS  Google Scholar 

  3. P. Zhu, D. Gastol, J. Marshall, R. Sommerville, V. Goodship, E. Kendrick, J. Power. Sources 485, 229321 (2021). https://doi.org/10.1016/j.jpowsour.2020.229321

    Article  CAS  Google Scholar 

  4. F.J. Humphreys, M. Hatherly, Recrystallization and Related Annealing Phenomena (Pergamon Press, Oxford, 1995), pp.1–9

    Google Scholar 

  5. D.N. Lee, Texture and Related Phenomena, 2nd edn. (The Korean Institute of Metals and Materials, Seoul, 2014), pp. 280–484

  6. H. Park, S.H. Kim, W.J. Lee, J.W. Ha, S.J. Kim, H.J. Lee, Met. Mater. Int. 27, 2220 (2021). https://doi.org/10.1007/s12540-020-00682-0

    Article  CAS  Google Scholar 

  7. H. Park, W.J. Lee, J.H. Son, H.K. Shin, S.K. Hong, H.J. Lee, Met. Mater. Int. 28, 1881 (2022). https://doi.org/10.1007/s12540-021-01089-1

    Article  CAS  Google Scholar 

  8. H.K. Shin, S.H. Kim, H. Park, H.J. Lee, J. Electrochem. Soc. 169, 102502 (2022). https://doi.org/10.1149/1945-7111/ac964e

    Article  CAS  Google Scholar 

  9. S. Samiei, G. Dini, M. Ebrahimian-Hosseinabadi, Met. Mater. Int. 29, 192 (2023). https://doi.org/10.1007/s12540-022-01202-y

    Article  CAS  Google Scholar 

  10. Z. Tang, W. Xiong, J. Zhang, Y. Zheng, C. Huang, Met. Mater. Int. 29, 1896 (2023). https://doi.org/10.1007/s12540-022-01361-y

    Article  CAS  Google Scholar 

  11. Y. Xiang, J.J. Vlassak, Acta Mater. 54, 5449 (2006). https://doi.org/10.1016/j.actamat.2006.06.059

    Article  CAS  Google Scholar 

  12. N.Q. Chinh, D. Olasz, A.Q. Ahmed, G. Sáfrán, J. Lendvai, T.G. Langdon, Mater. Sci. Eng. A 862, 144419 (2023). https://doi.org/10.1016/j.msea.2022.144419

    Article  CAS  Google Scholar 

  13. E.N. Hahn, M.A. Meyers, Mater. Sci. Eng. A 646, 101 (2015). https://doi.org/10.1016/j.msea.2015.07.075

    Article  CAS  Google Scholar 

  14. W.D. Nix, Metall. Trans. A 20, 2217 (1989). https://doi.org/10.1007/BF02666659

    Article  Google Scholar 

  15. E.J. Arzt, Acta Mater. 46, 5611 (1998). https://doi.org/10.1016/S1359-6454(98)00231-6

    Article  CAS  Google Scholar 

  16. X.Q. Liu, Z. Li, Z.J. Peng, R.X. Wang, Z.Q. Liu, Met. Mater. Int. (2023). https://doi.org/10.1007/s12540-023-01489-5

    Article  Google Scholar 

  17. H. Liu, Y. Shen, J. Ma, P. Zheng, L. Zhang, J. Mater. Eng. Perform. 25, 3599 (2016). https://doi.org/10.1007/s11665-016-2245-7

    Article  CAS  Google Scholar 

  18. J.S. Ibrahim, M.J.N.V. Prasad, P. Sarkar, K. Narasimhan, Met. Mater. Int. (2023). https://doi.org/10.1007/s12540-023-01520-9

    Article  Google Scholar 

  19. C.S. Hau-Riege, Microelectron. Reliab. 44, 195 (2004). https://doi.org/10.1016/j.microrel.2003.10.020

    Article  CAS  Google Scholar 

  20. T.P. Moffat, D. Wheeler, D. Josell, J. Electrochem. Soc. 151, C262 (2004). https://doi.org/10.1149/1.1651530

    Article  CAS  Google Scholar 

  21. A. Kreider, Mechanism of SPS acceleration in a PEG containing copper plating bath, Ph.D. thesis (University of New Hampshire, 2012)

  22. J.J. Kelly, N.Y. Yang, Electrodeposition of Ni from a sulfamate electrolyte, SAND Report (Sandia National Laboratories, 2001)

  23. G. Wu, W. Zhu, Q. He, Z. Feng, T. Huang, L. Zhang, S. Schmidt, A. Godfrey, X. Huang, Nano Mater. Sci. 2(1), 50–57 (2020). https://doi.org/10.1016/j.nanoms.2020.03.006

    Article  Google Scholar 

  24. I. Ghamarian, P. Samimi, G.S. Rohrer, P.C. Collins, Acta Mater. 130, 164–176 (2017). https://doi.org/10.1016/j.actamat.2017.03.041

    Article  CAS  Google Scholar 

  25. P.F. Rottmann, K.J. Hemker, Scr. Mater. 141, 76 (2017). https://doi.org/10.1016/j.scriptamat.2017.07.029

    Article  CAS  Google Scholar 

  26. B.Z. Cui, K. Han, Y. Xin, D.R. Waryoba, A.L. Mbaruku, Acta Mater. 55, 4429 (2007). https://doi.org/10.1016/j.actamat.2007.04.009

    Article  CAS  Google Scholar 

  27. H.J. Lee, H.N. Han, D.H. Kim, U.-H. Lee, K.H. Oh, P.-R. Cha, Appl. Phys. Lett. 89, 161924 (2006). https://doi.org/10.1063/1.2364119

    Article  CAS  Google Scholar 

  28. K. Lu, Nat. Rev. Mater. 1, 16019 (2016). https://doi.org/10.1038/natrevmats.2016.19

    Article  CAS  Google Scholar 

  29. C.V. Thompson, Annu. Rev. Mater. Sci. 30, 159 (2000). https://doi.org/10.1146/annurev.matsci.30.1.159

    Article  CAS  Google Scholar 

  30. A. Dulmaa, F.G. Cougnon, R. Dedoncker, D. Depla, Acta Mater. 212, 116896 (2021). https://doi.org/10.1016/j.actamat.2021.116896

    Article  CAS  Google Scholar 

  31. Q. Zhao, S. Stalin, C.Z. Zhao, L.A. Archer, Nat. Rev. Mater. 5, 229 (2020). https://doi.org/10.1038/s41578-019-0165-5

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Research Foundation of Korea (NRF) funded by the Ministry of Education (grant number NRF-2019M3A7B9072142). This work was also supported by the National Research Foundation of Korea (NRF) grant funded by the Korea Government (MSIT) (No. NRF-2021M3H4A6A01041234).

Funding

This research was supported by the National Research Foundation of Korea (NRF) funded by the Ministry of Education (grant number NRF-2019M3A7B9072142). This work was also supported by the National Research Foundation of Korea (NRF) grant funded by the Korea Government (MSIT) (No. NRF-2021M3H4A6A01041234).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the material preparation and data collection. Dr. S-DK helped us determine the grain structure of the nano-crystalline Ni foil using the TEM-based crystallographic mapping technique (ASTAR from NanoMEGAS). Dr. HP wrote the first draft of the manuscript and Dr. H-JL steered the overall direction of the manuscript. All authors commented on the previous version of the manuscript and approved the final manuscript.

Corresponding author

Correspondence to Hyo-Jong Lee.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised due to the affiliation “Present Address: Research & Development Team, Korea Zinc Advanced Materials, Ulsan 45011, Republic of Korea” was incorrectly given for Author Hyo-Jong Lee but it should have been Sung-Jin Kim.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, H., Kim, SJ., Song, Yj. et al. Microstructure-controlled Electrodeposition of Mechanically Reliable Double-layered Thin Foils for Secondary Batteries. Met. Mater. Int. 30, 1430–1439 (2024). https://doi.org/10.1007/s12540-023-01576-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-023-01576-7

Keywords

Navigation