Skip to main content
Log in

Preparation of Superhydrophobic Hydroxyapatite Coating on AZ31B Magnesium Alloy with Self-Cleaning Anti-Corrosion Properties and Excellent Stability

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

The poor corrosion resistance of magnesium alloy limits its applications. The preparation of superhydrophobic coating on its surface can effectively improve the corrosion resistance, and the self-cleaning performance of superhydrophobic coating can also enhance the anti-fouling performance of magnesium alloy. In this study, the flake superhydrophobic hydroxyapatite (HA) coating with micro-nano scale was prepared on the magnesium alloy surface by electrodeposition, chemical immersion and stearic acid low-energy modification. The measured water contact angle on the coating surface was 160.21° and the sliding angle was 2.5°. The stability tests indicated that the coating has excellent high-temperature resistance and mechanical stability, which opened up the possibility of high-temperature service. The electrochemical test showed that the superhydrophobic HA coating significantly enhanced the corrosion resistance of the magnesium alloy. The effectiveness of the corrosion inhibition was up to 99%, which provided a protective shield for the substrate. This work expects to further broaden the application field of magnesium alloys.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  1. N. Sezer, Z. Evis, M. Koc, Additive manufacturing of biodegradable magnesium implants and scaffolds: review of the recent advances and research trends. J. Magnes Alloy. 9, 392–415 (2021). https://doi.org/10.1016/j.jma.2020.09.014

    Article  CAS  Google Scholar 

  2. Z. Lin, X. Sun, H. Yang, The role of antibacterial metallic elements in simultaneously improving the corrosion resistance and antibacterial activity of magnesium alloys. Mater. Des. 198, 109350 (2021). https://doi.org/10.1016/j.matdes.2020.109350

    Article  CAS  Google Scholar 

  3. K. An, W. Tong, Y. Wang, Y. Qing, Y. Sui, Y. Xu, C. Ni, Eco-friendly superhydrophobic coupling conversion coating with corrosion resistance on magnesium alloy. Langmuir 39(18), 6355–6365 (2023). https://doi.org/10.1021/acs.langmuir.3c00025

    Article  CAS  PubMed  Google Scholar 

  4. H. He, J. Du, J. Sang, H. Hirahara, S. Aisawa, D. Chen, Superhydrophobic coatings by electrodeposition on Mg–Li alloys: attempt of armor-like ni patterns to improve the robustness. Mater. Chem. Phys. 304, 127902 (2023). https://doi.org/10.1016/j.matchemphys.2023.127902

    Article  CAS  Google Scholar 

  5. N. Huang, Y. Wang, Y. Zhang, L. Liu, N. Yuan, J. Ding, Multifunctional coating on magnesium alloy: superhydrophobic, self-healing, anti-corrosion and wear-resistant. Surf. Coat. Tech. 463, 129539 (2023). https://doi.org/10.1016/j.surfcoat.2023.129539

    Article  CAS  Google Scholar 

  6. Z. Huang, Q. Yong, R. Fang, Z. Xie, Superhydrophobic and corrosion-resistant nickel-based composite coating on magnesium alloy. J. Chin. Soc. Corros. Protect. 43(4), 755–764 (2023). https://doi.org/10.11902/1005.4537.2023.143

    Article  Google Scholar 

  7. D.B. Panemangalore, R. Shabadi, M. Gupta, G. Ji, Effect of fluoride coatings on the corrosion behavior of Mg–Zn–Er alloys. Surf. Interfaces 14, 72–81 (2019). https://doi.org/10.1016/j.surfin.2018.11.007

    Article  CAS  Google Scholar 

  8. N. Aboudzadeh, C. Dehghanian, M. Shokrgozar, Effect of electrodeposition parameters and substrate on morphology of Si–HA coating. Surf. Coat. Tech. 375, 341–351 (2019). https://doi.org/10.1016/j.surfcoat.2019.07.016

    Article  CAS  Google Scholar 

  9. X.N. Ly, S. Yang, Influence of current mode on microstructure and corrosion behavior of micro-arc oxidation (MAO) biodegradable Mg–Zn–Ca alloy in Hank’s solution. Surf. Coat. Tech. 358, 331–339 (2019). https://doi.org/10.1016/j.surfcoat.2018.11.040

    Article  CAS  Google Scholar 

  10. M. Zhou, X. Pang, L. Wei, K. Gao, Insitu grown superhydrophobic Zn–Al layered double hydroxides films on magnesium alloy to improve corrosion properties. Appl. Surf. Sci. 337, 172–177 (2015). https://doi.org/10.1016/j.apsusc.2015.02.086

    Article  ADS  CAS  Google Scholar 

  11. N.J. Shirtcliffe, G. McHale, M.I. Newton, C.C. Perry, Intrinsically superhydrophobic organosilica sol–gel foams. Langmuir 19, 5626–5631 (2003). https://doi.org/10.1021/la034204f

    Article  CAS  Google Scholar 

  12. J. Yang, Z. Zhang, X. Men, X. Xu, X. Zhu, Reversible superhydrophobicity to superhydrophilicity switching of a carbon nanotube film via alternation of UV irradiation and dark storage. Langmuir 26, 10198–10202 (2010). https://doi.org/10.1021/la100355n

    Article  CAS  PubMed  Google Scholar 

  13. K. Søballe, S. Overgaard, The current status of hydroxyapatite coating of prostheses. J. Bone Jt. Surg. Br. 78, 689–691 (1996). https://doi.org/10.1302/0301-620X.78B5.0780689

    Article  Google Scholar 

  14. Y. Liu, D. Han, Z. Jiao, Y. Liu, H. Jiang, X. Wu, H. ding, Y. Zhang, H. Sun, Laser-structured Janus wire mesh for efficient oil–water separation. Nanoscale. 9, 17933–17938 (2017). https://doi.org/10.1039/C7NR06110B

    Article  CAS  PubMed  Google Scholar 

  15. A.J. Nathanael, D. Mangalaraj, P.C. Chen, N. Ponpandian, Mechanical and photocatalytic properties of hydroxyapatite/titania nanocomposites prepared by combined high gravity and hydrothermal process. Compos. Sci. Technol. 70, 419–426 (2010). https://doi.org/10.1016/j.compscitech.2009.11.009

    Article  CAS  Google Scholar 

  16. S.K. Hubadillah, M.H.D. Othman, Z.S. Tai, M.R. Jamalludin, N.K. Yusuf, A. Ahmad, M.A. Rahman, J. Jaafar, S.H.S. Abdul Kadir, Z. Harun, Novel hydroxyapatite-based bio-ceramic hollow fiber membrane derived from waste cow bone for textile wastewater treatment. Chem. Eng. J. 379, 122396 (2020). https://doi.org/10.1016/j.cej.2019.122396

    Article  CAS  Google Scholar 

  17. G.S. Watson, M. Gellender, J.A. Watson, Self-propulsion of dew drops on lotus leaves: a potential mechanism for self cleaning. Biofouling. 30, 427–434 (2014). https://doi.org/10.1007/s004250050096

    Article  PubMed  Google Scholar 

  18. N. Wang, L. Tang, Y. Cai, W. Tong, D. Xiong, Scalable superhydrophobic coating with controllable wettability and investigations of its drag reduction. Colloid Surf. A 555, 290–295 (2018). https://doi.org/10.1016/j.colsurfa.2018.07.011

    Article  ADS  CAS  Google Scholar 

  19. S.D. Jiang, Q.Z. Yao, G.T. Zhou, S.Q. Fu, Fabrication of hydroxyapatite hierarchical hollow microspheres and potential application in water treatment. J. Phys. Chem. C 116, 4484–4492 (2012). https://doi.org/10.1021/cg800738a

    Article  CAS  Google Scholar 

  20. P. Wang, C. Li, H. Gong, X. Jiang, H. Wang, K. Li, Effects of synthesis conditions on the morphology of hydroxyapatite nanoparticles produced by wet chemical process. Powder Technol. 203, 315–321 (2010). https://doi.org/10.1016/j.powtec.2010.05.023

    Article  CAS  Google Scholar 

  21. H. Ito, Y. Oaki, H. Imai, Selective synthesis of various nanoscale morphologies of hydroxyapatite via an intermediate phase. Cryst. Growth Des. 8, 1055–1059 (2008). https://doi.org/10.1021/cg070443f

    Article  CAS  Google Scholar 

  22. X. Jing, Z. Guo, Durable lubricant-impregnated surfaces for water collection under extremely severe working conditions, ACS Appl. Mater. Interfaces 11(39), 35949–35958 (2019). https://doi.org/10.1021/acsami.9b08885

    Article  CAS  PubMed  Google Scholar 

  23. W. Li, L. Yang, X. Xie, K.H. Ng, F. Xu, C. Zheng, Z. Zhang, S. Li, J. Huang, W. Cai, Y. Lai, Environmentally-friendly foam-coating synthetic strategy for fabrics with robust superhydrophobicity, self-cleaning capability and flame retardance properties. Chem. Eng. J. 470, 144376 (2023). https://doi.org/10.1016/j.cej.2023.144376

    Article  PubMed  PubMed Central  Google Scholar 

  24. Y. Tang, J. Yang, L. Yin, B. Chen, H. Tang, C. Liu, C. Li, Fabrication of superhydrophobic polyurethane/MoS2 nanocomposite coatings with wear-resistance. Colloid Surf. A 459, 261–266 (2014). https://doi.org/10.1016/j.colsurfa.2014.07.018

    Article  CAS  Google Scholar 

  25. S.S. Latthe, H. Imai, V. Ganesan, A.V. Rao, Superhydrophobic silica films by sol–gel co-precursor method. Appl. Surf. Sci. 256, 217–222 (2009). https://doi.org/10.1016/j.apsusc.2009.07.113

    Article  ADS  CAS  Google Scholar 

  26. T.T. Isimjan, T. Wang, S. Rohani, A novel method to prepare superhydrophobic, UV resistance and anti-corrosion steel surface. Chem. Eng. J. 210, 182–187 (2012). https://doi.org/10.1016/j.cej.2012.08.090

    Article  CAS  Google Scholar 

  27. W. Lai, C. Chen, X. Ren, I.S. Lee, G. Jiang, X. Kong, Hydrothermal fabrication of porous hollow hydroxyapatite microspheres for a drug delivery system. Mater. Sci. Eng. C 62, 166–172 (2016). https://doi.org/10.1016/j.msec.2016.01.055

    Article  CAS  Google Scholar 

  28. R. Rojaee, M. Fathi, K. Raeissi, Controlling the degradation rate of AZ91 magnesium alloy via sol–gel derived nanostructured hydroxyapatite coating. Mater. Sci. Eng. C 33, 3817–3825 (2013). https://doi.org/10.1016/j.msec.2013.05.014

    Article  CAS  Google Scholar 

  29. A.C. Noorakma, H. Zuhailawati, V. Aishvarya, B.K. Dhindaw, Hydroxyapatite-coated magnesium-based biodegradable alloy: cold spray deposition and simulated body fluid studies. J. Mater. Eng. Perform. 22, 2997–3004 (2013). https://doi.org/10.1007/s11665-013-0589-9

    Article  CAS  Google Scholar 

  30. Z. Kang, J. Zhang, L. Niu, A one-step hydrothermal process to fabricate superhydrophobic hydroxyapatite coatings and determination of their properties. Surf. Coat. Tech. 334, 84–89 (2018). https://doi.org/10.1016/j.surfcoat.2017.11.007

    Article  CAS  Google Scholar 

  31. T. Tsuchida, J. Kubo, T. Yoshioka, S. Sakuma, T. Takeguchi, W. Ueda, Reaction of ethanol over hydroxyapatite affected by Ca/P ratio of catalyst. J. Catal. 259, 183–189 (2008). https://doi.org/10.1016/j.jcat.2008.08.005

    Article  CAS  Google Scholar 

  32. A.B.D. Cassie, S. Baxter, Wettability of porous surfaces. Trans. Faraday Soc. 40, 546–551 (1944). https://doi.org/10.1039/tf9444000546

    Article  CAS  Google Scholar 

  33. X. Yin, S. Yu, K. Wang, R. Cheng, Z. Lv, Fluorine-free preparation of self-healing and anti-fouling superhydrophobic Ni3S2 coating on 304 stainless steel. Chem. Eng. J. 394, 124925 (2020). https://doi.org/10.1016/j.cej.2020.124925

    Article  CAS  Google Scholar 

  34. H. Li, S. Yu, A robust superhydrophobic surface and origins of its self-cleaning properties. Appl. Surf. Sci. 420, 336–345 (2017). https://doi.org/10.1016/j.apsusc.2017.05.131

    Article  ADS  CAS  Google Scholar 

  35. B. Bhushan, E.K. Her, Fabrication of superhydrophobic surfaces with high and low adhesion inspired from rose petal. Langmuir 26, 8207–8217 (2010). https://doi.org/10.1021/la904585j

    Article  CAS  PubMed  Google Scholar 

  36. M. Yu, S. Chen, B. Zhang, D. Qiu, S. Cui, Why a lotus-like superhydrophobic surface is self-cleaning? An explanation from surface force measurements and analysis. Langmuir 30, 13615–13621 (2014). https://doi.org/10.1021/la5041272

    Article  CAS  PubMed  Google Scholar 

  37. A. Castellanos, H. Mawson, V. Burke, P. Prabhakar, Fly-ash cenosphere/clay blended composites for impact resistant tiles. Constr. Build. Mater. 156, 307–313 (2017). https://doi.org/10.1016/j.conbuildmat.2017.08.151

    Article  Google Scholar 

  38. L. Wang, X. Xiao, E. Liu, S. Yu, J. Li, Fabrication of superhydrophobic needle-like Ca–P coating with anti-fouling and anti-corrosion properties on AZ31 magnesium alloy. Colloid Surf. A 620, 126568 (2021). https://doi.org/10.1016/j.colsurfa.2021.126568

    Article  CAS  Google Scholar 

  39. K. Wang, S. Yu, W. Li, Y. Song, P. Gong, M. Zhang, H. Li, D. Sun, X. Yang, X. Wang, Superhydrophobic and photocatalytic synergistic self-cleaning ZnS coating. Appl. Surf. Sci. 595, 153565 (2022). https://doi.org/10.1016/j.apsusc.2022.153565

    Article  CAS  Google Scholar 

  40. H. Jia, X. Feng, Y. Yang, Effect of grain morphology on the degradation behavior of Mg-4wt% Zn alloy in Hank’s solution. Mater. Sci. Eng. C 106, 110013 (2020). https://doi.org/10.1016/j.msec.2019.110013

    Article  CAS  Google Scholar 

  41. T. Zheng, Y. Hu, F. Pan, Y. Zhang, A. Tang, Fabrication of corrosion-resistant superhydrophobic coating on magnesium alloy by one-step electrodeposition method. J. Magnes Alloy. 7, 193–202 (2019). https://doi.org/10.1016/j.jma.2019.05.006

    Article  CAS  Google Scholar 

  42. X. Liu, T.C. Zhang, H. He, L. Ouyang, S. Yuan, A stearic Acid/CeO2 bilayer coating on AZ31B magnesium alloy with superhydrophobic and self-cleaning properties for corrosion inhibition. J. Alloy. Compd. 834, 155210 (2020). https://doi.org/10.1016/j.jallcom.2020.155210

    Article  CAS  Google Scholar 

  43. J. Kuang, Z. Ba, Z. Li, Y. Jia, Z. Wang, Fabrication of a superhydrophobic Mg–Mn layered double hydroxides coating on pure magnesium and its corrosion resistance. Surf. Coat. Tech. 361, 75–82 (2019). https://doi.org/10.1016/j.surfcoat.2019.01.009

    Article  CAS  Google Scholar 

  44. B. Zhang, Q. Zhu, Y. Li, B. Hou, Facile fluorine-free one step fabrication of superhydrophobic aluminum surface towards self-cleaning and marine anticorrosion. Chem. Eng. J. 352, 625–633 (2018). https://doi.org/10.1016/j.cej.2018.07.074

    Article  CAS  Google Scholar 

  45. C. Wang, X. Zhang, A non-particle and fluorine-free superhydrophobic surface based on one-step electrodeposition of dodecyltrimethoxysilane on mild steel for corrosion protection. Corros. Sci. 163, 108284 (2020). https://doi.org/10.1016/j.corsci.2019.108284

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of Shandong Province of China (No. ZR2019MEM020) and the Project of Jilin Province Development and Reform Commission (No. 2021C039-5).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Xiong.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bi, Y., Xiong, W., Li, Z. et al. Preparation of Superhydrophobic Hydroxyapatite Coating on AZ31B Magnesium Alloy with Self-Cleaning Anti-Corrosion Properties and Excellent Stability. Met. Mater. Int. 30, 667–681 (2024). https://doi.org/10.1007/s12540-023-01529-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-023-01529-0

Keywords

Navigation