Skip to main content
Log in

Effect of Vacuum Degrees on Interfacial Bonding Behavior of 7050 Aluminum Alloy Clad Plates During Hot-Roll Cladding

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

Interfacial bonding behavior of 7050 aluminum alloy clad plates during hot-roll cladding under different vacuum degrees was investigated. The results demonstrated that the bonding effect of the interface was positively correlated with the vacuum degree. Due to severe surface oxidation at 105 Pa, the metal on both sides of the interface did not undergo metallurgical bonding and mainly maintained physical contact, with an ultimate tensile strength (UTS) of only 209 MPa across the interface. At 102 Pa, the large-scale migration of original interfacial grain boundary was still inhibited and continuous dynamic recrystallization occurred mainly at the interface with bulging only locally, which directly led to brittle fracture. At 10–1 Pa, significant discontinuous dynamic recrystallization (DDRX) occurred at the interface, resulting in the complete elimination of the original interface. And UTS across the interface was 338 MPa, reaching the level of the matrix. Therefore, interfacial metallurgical bonding could be achieved by reducing the oxidation of interface and further inducing DDRX during hot-roll cladding.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. A. Azarniya, A.K. Taheri, K.K. Taheri, J. Alloy. Compd. 781, 945–983 (2019). https://doi.org/10.1016/j.jallcom.2018.11.286

    Article  CAS  Google Scholar 

  2. T. Dursun, C. Soutis, Mater. Des. 56, 862–871 (2014). https://doi.org/10.1016/j.matdes.2013.12.002

    Article  CAS  Google Scholar 

  3. Y. Li, H. Li, L. Katgerman, Q. Du, J. Zhang, L.Z. Zhuang, Prog. Mater. Sci. 117, 100741 (2021). https://doi.org/10.1016/j.pmatsci.2020.100741

    Article  CAS  Google Scholar 

  4. X.W. She, X.Q. Jiang, P.Q. Wang, B.B. Tang, K. Chen, Y.J. Liu, W.N. Cao, Trans. Nonferrous Met. Soc. China. 30, 1780–1789 (2020). https://doi.org/10.1016/S1003-6326(20)65338-9

    Article  CAS  Google Scholar 

  5. R. Nadella, D.G. Eskin, Q. Du, L. Katgerman, Prog. Mater. Sci. 53, 421–480 (2008). https://doi.org/10.1016/j.pmatsci.2007.10.001

    Article  CAS  Google Scholar 

  6. X.D. Liu, Q.F. Zhu, Z.M. Li, C. Zhu, R. Wang, T. Jia, Z.H. Zhao, J.Z. Cui, Y.B. Zuo, Trans. Nonferrous Met. Soc. China. 31, 565–575 (2021). https://doi.org/10.1016/S1003-6326(21)65519-X

    Article  CAS  Google Scholar 

  7. Y. Qiu, K.H. Zheng, X.T. Li, Y.J. Luo, P. Xia, M.Y. Liu, N. Zhou, Y.W. Jia, J. Mater. Res. Technol. 18, 2885–2895 (2022). https://doi.org/10.1016/j.jmrt.2022.03.177

    Article  CAS  Google Scholar 

  8. W. Khalifa, Y. Tsunekawa, M. Okumiya, J. Mater. Process. Technol. 210, 2178–2187 (2010). https://doi.org/10.1016/j.jmatprotec.2010.08.008

    Article  CAS  Google Scholar 

  9. X. Zhang, Z.A. Luo, G.M. Xie, H. Yu, Z.S. Liu, J.S. Yang, Mater. Sci. Eng. A 850, 143582 (2022). https://doi.org/10.1016/j.msea.2022.143582

    Article  CAS  Google Scholar 

  10. N. Birks, G.H. Meier, F.S. Pettit, Introduction to High-Temperature Oxidation of Metals, 2nd edn. (Cambridge University Press, New York, 2006), pp.6–15

    Book  Google Scholar 

  11. R.U. Din, K. Bordo, M.S. Jellesen, R. Ambat, Surf. Coat. Technol. 276, 106–115 (2015). https://doi.org/10.1016/j.surfcoat.2015.06.060

    Article  CAS  Google Scholar 

  12. L.P.H. Jeurgens, W.G. Sloof, F.D. Tichelaar, E.J. Mittemeijer, J. Appl. Phys. 92, 1649–1656 (2002). https://doi.org/10.1063/1.1491591

    Article  CAS  Google Scholar 

  13. E. Panda, L.P.H. Jeurgens, E.J. Mittemeijer, Corrosion Sci. 52, 2556–2564 (2010). https://doi.org/10.1016/j.corsci.2010.03.028

    Article  CAS  Google Scholar 

  14. N. Bandaru, D. Ajmera, K. Manwani, S. Majhi, E. Panda, Trans. Indian Inst. Met. 70, 1269–1275 (2017). https://doi.org/10.1007/s12666-016-0920-x

    Article  CAS  Google Scholar 

  15. J.Q. Yu, G.Q. Zhao, Mater. Charact. 138, 56–66 (2018). https://doi.org/10.1016/j.matchar.2018.01.052

    Article  CAS  Google Scholar 

  16. J.Q. Yu, G.Q. Zhao, W.C. Cui, C.S. Zhang, L. Chen, J. Mater. Process. Technol. 247, 214–222 (2017). https://doi.org/10.1016/j.jmatprotec.2017.04.030

    Article  CAS  Google Scholar 

  17. J.Q. Yu, G.Q. Zhao, C.S. Zhang, L. Chen, Mater. Sci. Eng. A 682, 679–690 (2017). https://doi.org/10.1016/j.msea.2016.11.089

    Article  CAS  Google Scholar 

  18. Z.C. Zhu, Y. He, X.J. Zhang, H.Y. Liu, X. Li, Mater. Sci. Eng. A 669, 344–349 (2016). https://doi.org/10.1016/j.msea.2016.05.066

    Article  CAS  Google Scholar 

  19. N. Malik, P.A. Carvalho, E. Poppe, T.G. Finstad, J. Appl. Phys. 119, 205303 (2016). https://doi.org/10.1063/1.4952709

    Article  CAS  Google Scholar 

  20. X. Xu, X.W. Ma, G.Q. Zhao, X.X. Chen, Y.X. Wang, J. Alloy. Compd. 867, 159043 (2021). https://doi.org/10.1016/j.jallcom.2021.159043

    Article  CAS  Google Scholar 

  21. X. Xu, X.W. Ma, G.Q. Zhao, Y.X. Wang, X.X. Chen, Mater. Des. 210, 110043 (2021). https://doi.org/10.1016/j.matdes.2021.110043

    Article  CAS  Google Scholar 

  22. N. Kurgan, Int. J. Adv. Manuf. Technol. 71, 2115–2124 (2014). https://doi.org/10.1007/s00170-014-5650-9

    Article  Google Scholar 

  23. J.Y. Zhang, B. Xu, N. Haq Tariq, M.Y. Sun, D.Z. Li, Y.Y. Li, J. Mater. Sci. Technol. 46, 1–11 (2020). https://doi.org/10.1016/j.jmst.2019.11.015

    Article  Google Scholar 

  24. J.Y. Zhang, B. Xu, N.U.H. Tariq, M.Y. Sun, D.Z. Li, Y.Y. Li, J. Mater. Sci. Technol. 40, 54–63 (2020). https://doi.org/10.1016/j.jmst.2019.08.044

    Article  Google Scholar 

  25. R. Luo, Y. Cao, H.K. Bian, L.L. Chen, C.T. Peng, F.Y. Cao, L.X. Ouyang, Y. Qiu, Y.J. Xu, A. Chiba, X.N. Cheng, Mater. Charact. 178, 111203 (2021). https://doi.org/10.1016/j.matchar.2021.111203

    Article  CAS  Google Scholar 

  26. C.C. Xu, H. He, Z.G. Xue, L.X. Li, Mater. Charact. 171, 110801 (2021). https://doi.org/10.1016/j.matchar.2020.110801

    Article  CAS  Google Scholar 

  27. C.L. Xu, J.W. Huang, F.Q. Jiang, Y.G. Jiang, Mater. Charact. 183, 111629 (2022). https://doi.org/10.1016/j.matchar.2021.111629

    Article  CAS  Google Scholar 

  28. J.J. Zhang, Y.P. Yi, H.L. He, S.Q. Huang, X.C. Mao, W.F. Guo, W. You, Y.L. Guo, F. Dong, J.G. Tang, Mater. Charact. 181, 111492 (2021). https://doi.org/10.1016/j.matchar.2021.111492

    Article  CAS  Google Scholar 

  29. X. Xu, X.W. Ma, S.B. Yu, G.Q. Zhao, Y.X. Wang, X.X. Chen, Mater. Charact. 167, 110486 (2020). https://doi.org/10.1016/j.matchar.2020.110486

    Article  CAS  Google Scholar 

  30. T.F. Chung, Y.L. Yang, C.L. Tai, M. Shiojiri, C.N. Hsiao, C.S. Tsao, W.C. Li, Z. Shi, J. Lin, H.R. Chena, J.R. Yang, Mater. Sci. Eng. A 815, 141213 (2021). https://doi.org/10.1016/j.msea.2021.141213

    Article  CAS  Google Scholar 

  31. Q.H. Zang, D. Feng, Y.S. Lee, H.M. Chen, M.S. Kim, H.W. Kim, J. Alloy. Compd. 847, 156481 (2020). https://doi.org/10.1016/j.jallcom.2020.156481

    Article  CAS  Google Scholar 

  32. R.J. Dai, K.K. Deng, C.J. Wang, K.B. Nie, G.W. Zhang, W. Liang, Mater. Sci. Eng. A 848, 143388 (2022). https://doi.org/10.1016/j.msea.2022.143388

    Article  CAS  Google Scholar 

  33. S. Choi, J. Jeon, N. Seo, S.B. Son, S.J. Lee, Met. Mater.-Int. 27, 449–455 (2021). https://doi.org/10.1007/s12540-020-00910-7

    Article  CAS  Google Scholar 

  34. A. Abolhasani, A. Zarei-Hanzaki, H.R. Abedi, M.R. Rokni, Mater. Des. 34, 631–636 (2012). https://doi.org/10.1016/j.matdes.2011.05.019

    Article  CAS  Google Scholar 

  35. G.S. Peng, K.H. Chen, S.Y. Chen, H.C. Fang, Mater. Sci. Eng. A 641, 237–241 (2015). https://doi.org/10.1016/j.msea.2015.06.058

    Article  CAS  Google Scholar 

  36. Y. Zhang, J.F. Jiang, Y. Wang, G.F. Xiao, Y.Z. Liu, M.J. Huang, J. Alloy. Compd. 893, 162311 (2022). https://doi.org/10.1016/j.jallcom.2021.162311

    Article  CAS  Google Scholar 

  37. J.C. Li, X.D. Wu, B. Liao, X.M. Lin, L.F. Cao, Trans. Nonferrous Met. Soc. China 31, 1902–1915 (2021). https://doi.org/10.1016/S1003-6326(21)65625-X

    Article  CAS  Google Scholar 

  38. S. Jin, B. Kang, T. Kong, S.H. Hong, H.J. Shin, R.S. Ruoff, J. Alloy. Compd. 853, 157390 (2021). https://doi.org/10.1016/j.jallcom.2020.157390

    Article  CAS  Google Scholar 

  39. L.Y. Zhou, W.X. Chen, S.B. Feng, M.Y. Sun, B. Xu, D.Z. Li, J. Mater. Sci. Technol. 43, 92–103 (2020). https://doi.org/10.1016/j.jmst.2020.01.010

    Article  CAS  Google Scholar 

  40. R. Fu, Y.C. Huang, Y. Liu, H. Li, Met. Mater. Int. 29, 2605–2622 (2023). https://doi.org/10.1007/s12540-023-01397-8

    Article  Google Scholar 

  41. B.C. Xie, B.Y. Zhang, Y.Q. Ning, M.W. Fu, J. Alloy. Compd. 786, 636–647 (2019). https://doi.org/10.1016/j.jallcom.2019.01.334

    Article  CAS  Google Scholar 

  42. J.J. Zhang, Y.P. Yi, S.Q. Huang, X.C. Mao, H.L. He, J.G. Tang, W.F. Guo, F. Dong, Mater. Sci. Eng. A 804, 140650 (2021). https://doi.org/10.1016/j.msea.2020.140650

    Article  CAS  Google Scholar 

  43. K. Huang, R.E. Logé, Mater. Des. 111, 548–574 (2016). https://doi.org/10.1016/j.matdes.2016.09.012

    Article  CAS  Google Scholar 

  44. B.X. Liu, J.Y. Wei, M.X. Yang, F.X. Yin, K.C. Xu, Vacuum 154, 250–258 (2018). https://doi.org/10.1016/j.vacuum.2018.05.022

    Article  CAS  Google Scholar 

  45. S. Wang, B.X. Liu, C.X. Chen, J.H. Feng, F.X. Yin, J. Alloy. Compd. 766, 517–526 (2018). https://doi.org/10.1016/j.jallcom.2018.06.109

    Article  CAS  Google Scholar 

  46. X. Zhang, Z.A. Luo, Z.S. Liu, M.K. Wang, H. Yu, Y.Y. Feng, G.M. Xie, Mater. Sci. Eng. A 860, 144310 (2022). https://doi.org/10.1016/j.msea.2022.144310

    Article  CAS  Google Scholar 

  47. B.J. Xie, M.Y. Sun, B. Xu, C.Y. Wang, D.Z. Li, Y.Y. Li, Mater. Des. 157, 437–446 (2018). https://doi.org/10.1016/j.matdes.2018.08.003

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key Research and Development Program of China (Grant No. 2018YFA0707300), the National Natural Science Foundation of China (Grant No. 52105322) and the Key Research and Development Program projects of Shandong (Grant No. 2020CXGC010304).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zong-an Luo or Guang-ming Xie.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Luo, Za., Yang, Js. et al. Effect of Vacuum Degrees on Interfacial Bonding Behavior of 7050 Aluminum Alloy Clad Plates During Hot-Roll Cladding. Met. Mater. Int. 30, 469–482 (2024). https://doi.org/10.1007/s12540-023-01505-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-023-01505-8

Keywords

Navigation