Skip to main content
Log in

Compositional Dependence of the Recrystallization and Grain Growth in Strongly-distorted Pd-containing Multi-Component Equiatomic Alloys

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

The equiatomic high entropy alloy (HEA) NiCoCrFePd crystalizes as a single face-centered cubic (FCC) phase with strong local lattice distortion due to large atomic size mismatch between Pd element and other constitute elements. To better understand this quinary alloy, a family of single FCC phase equiatomic alloys made from the constituent elements of the NiCoCrFePd HEA, including the binary NiPd alloy, medium entropy alloys (MEAs) of NiCoPd, NiCrPd, and NiFePd, and the quinary NiCoCrFePd HEA with fully-recrystallized microstructure was experimentally investigated to understand the chemical effects on grain growth kinetics and solid solution hardening. With the principal elements increasing from two to five, the grain growth was increasingly inhibited in the annealing temperature range of 800–900 °C, while at 1000 °C and above, the NiCrPd MEA showed the slowest grain growth, which may attribute to the higher melting temperature of Cr and negative mixing enthalpy between Cr and other constituent elements, increasing the activation energy of grain growth. Moreover, the hardness depending on the grain size complied with the Hall-Petch relationship, in which NiCoPd exhibited the lowest hardness, while NiPd had a comparable hardness with NiCrPd and NiFePd. The above results suggested that the number of alloying elements was not the sole factor determining the sluggish diffusion and hardness. Instead, the type of constituent elements in the Pd-containing multicomponent alloys played more critical role. Furthermore, it was concluded that the strength of MEAs and HEA should depend on the combination of atomic size and modulus mismatch and electronegativity difference.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. J.-W. Yeh, S.-K. Chen, S.-J. Lin, J.-Y. Gan, T.-S. Chin, T.-T. Shun, C.-H. Tsau, S.Y. Chang, Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv. Eng. Mater. 6, 299–303 (2004). https://doi.org/10.1002/adem.200300567

    Article  CAS  Google Scholar 

  2. B. Cantor, I.T.H. Chang, P. Knight, A.J.B. Vincent, Microstructural development in equiatomic multicomponent alloys. Mater. Sci. Eng. A 375–377, 213–218, (2004). https://doi.org/10.1016/j.msea.2003.10.257

  3. Y. Zhang, T.T. Zuo, Z. Tang, M.C. Gao, K.A. Dahmen, P.K. Liaw, Z.P. Lu, Microstructures and properties of high-entropy alloys. Prog. Mater. Sci. 61, 1–93 (2014). https://doi.org/10.1016/j.pmatsci.2013.10.001

    Article  CAS  Google Scholar 

  4. D.B. Miracle, O.N. Senkov, A critical review of high entropy alloys and related concepts. Acta Mater. 122, 448–511 (2017). https://doi.org/10.1016/j.actamat.2016.08.081

    Article  CAS  Google Scholar 

  5. O.N. Senkov, J.D. Miller, D.B. Miracle, C. Woodward, Accelerated exploration of multi-principal element alloys for structural applications. Calphad 50, 32–48 (2015). https://doi.org/10.1016/j.calphad.2015.04.009

    Article  CAS  Google Scholar 

  6. Q. Ding, Y. Zhang, X. Chen, X. Fu, D. Chen, S. Chen, L. Gu, F. Wei, H. Bei, Y. Gao, M. Wen, J. Li, Z. Zhang, T. Zhu, R.O. Ritchie, Q. Yu, Tuning element distribution, structure and properties by composition in high-entropy alloys. Nature 574(7777), 223–227 (2019). https://doi.org/10.1038/s41586-019-1617-1

    Article  CAS  Google Scholar 

  7. Z. Wu, H. Bei, F. Otto, G.M. Pharr, E.P. George, Recovery, recrystallization, grain growth and phase stability of a family of FCC-structured multi-component equiatomic solid solution alloys. Intermetallics 46, 131–140 (2014). https://doi.org/10.1016/j.intermet.2013.10.024

    Article  CAS  Google Scholar 

  8. T. Yang, Y.L. Zhao, L. Fan, J. Wei, J.H. Luan, W.H. Liu, C. Wang, Z.B. Jiao, J.J. Kai, C.T. Liu, Control of nanoscale precipitation and elimination of intermediate-temperature embrittlement in multicomponent high-entropy alloys. Acta Mater. 189, 47–59 (2020). https://doi.org/10.1016/j.actamat.2020.02.059

    Article  CAS  Google Scholar 

  9. Y. Yang, T. Chen, L. Tan, J.D. Poplawsky, K. An, Y. Wang, G.D. Samolyuk, K. Littrell, A.R. Lupini, A. Borisevich, E.P. George, Bifunctional nanoprecipitates strengthen and ductilize a medium-entropy alloy. Nature 595(7866), 245–249 (2021). https://doi.org/10.1038/s41586-021-03607-y

    Article  CAS  Google Scholar 

  10. T. Yang, Y.L. Zhao, W.P. Li, C.Y. Yu, J.H. Luan, D.Y. Lin, L. Fan, Z.B. Jiao, W.H. Liu, X.J. Liu, J.J. Kai, J.C. Huang, C.T. Liu, Ultrahigh-strength and ductile superlattice alloys with nanoscale disordered interfaces. Science 369(6502), 427–432 (2020). https://doi.org/10.1126/science.abb6830

    Article  CAS  Google Scholar 

  11. A. Fu, B. Liu, W. Lu, B. Liu, J. Li, Q. Fang, Z. Li, Y. Liu, A novel supersaturated medium entropy alloy with superior tensile properties and corrosion resistance. Scr. Mater. 186, 381–386 (2020). https://doi.org/10.1016/j.scriptamat.2020.05.023

  12. S. Liu, W. Kai, J. Hou, Y. Zhao, Q. Li, C.-. Yang, T. Yang, J.-j. Kai, Oxidation behaviors and mechanical properties of L12-strengthened high-entropy alloys at 700 ℃. Corros. Sci. 206, 110499 (2022). https://doi.org/10.1016/j.corsci.2022.110499

  13. Y. Lin, T. Yang, L. Lang, C. Shan, H. Deng, W. Hu, F. Gao, Enhanced radiation tolerance of the Ni-Co-Cr-Fe high-entropy alloy as revealed from primary damage. Acta Mater. 196, 133–143 (2020). https://doi.org/10.1016/j.actamat.2020.06.027

    Article  CAS  Google Scholar 

  14. Y. Tong, G. Velisa, S. Zhao, W. Guo, T. Yang, K. Jin, C. Lu, H. Bei, J.Y.P. Ko, D.C. Pagan, Y. Zhang, L. Wang, F.X. Zhang, Evolution of local lattice distortion under irradiation in medium- and high-entropy alloys. Materialia 2, 73–81 (2018). https://doi.org/10.1016/j.mtla.2018.06.008

    Article  Google Scholar 

  15. M. Vaidya, K.G. Pradeep, B.S. Murty, G. Wilde, S.V. Divinski, Bulk tracer diffusion in CoCrFeNi and CoCrFeMnNi high entropy alloys. Acta Mater. 146, 211–224 (2018). https://doi.org/10.1016/j.actamat.2017.12.052

    Article  CAS  Google Scholar 

  16. S. Qiu, G.P. Zheng, Z.B. Jiao, Alloying effects on phase stability, mechanical properties, and deformation behavior of CoCrNi-based medium-entropy alloys at low temperatures. Intermetallics 140, 107399 (2022). https://doi.org/10.1016/j.intermet.2021.107399

    Article  CAS  Google Scholar 

  17. B. Yin, W.A. Curtin, Origin of high strength in the CoCrFeNiPd high-entropy alloy. Mater. Res. Lett. 8(6), 209–215 (2020). https://doi.org/10.1080/21663831.2020.1739156

    Article  CAS  Google Scholar 

  18. A. Fantin, G.O. Lepore, A.M. Manzoni, S. Kasatikov, T. Scherb, T. Huthwelker, F. d’Acapito, G. Schumacher, Short-range chemical order and local lattice distortion in a compositionally complex alloy. Acta Mater. 193, 329–337 (2020). https://doi.org/10.1016/j.actamat.2020.04.034

    Article  CAS  Google Scholar 

  19. E. Ma, Unusual dislocation behavior in high-entropy alloys. Scr. Mater. 181, 127–133 (2020). https://doi.org/10.1016/j.scriptamat.2020.02.021

    Article  CAS  Google Scholar 

  20. J.E. Burke, D. Turnbull, Recrystallization and grain growth. Prog. Met. Phys. 3, 220–292 (1952). https://doi.org/10.1016/0502-8205(52)90009-9

    Article  CAS  Google Scholar 

  21. H.V. Atkinson, Overview no. 65 theories of normal grain growth in pure single phase systems. Acta Metall. 36(3), 469–491 (1988). https://doi.org/10.1016/0001-6160(88)90079-X

    Article  CAS  Google Scholar 

  22. W.H. Liu, Y. Wu, J.Y. He, T.G. Nieh, Z.P. Lu, Grain growth and the hall–petch relationship in a high-entropy FeCrNiCoMn alloy. Scr. Mater. 68(7), 526–529 (2013). https://doi.org/10.1016/j.scriptamat.2012.12.002

    Article  CAS  Google Scholar 

  23. S.Y. Chen, K.-K. Tseng, Y. Tong, W.D. Li, T.C.-W. Tsai, J.-W. Yeh, .Liaw, Grain growth and hall-petch relationship in a refractory HfNbTaZrTi high-entropy alloy. J. Alloys Compd. 795, 19–26 (2019). https://doi.org/10.1016/j.jallcom.2019.04.291

    Article  CAS  Google Scholar 

  24. Y.C. Huang, C.H. Su, S.K. Wu, C. Lin, A study on the hall–petch relationship and grain growth kinetics in FCC-structured high/medium entropy alloys. Entropy (Basel) 21(3), 297 (2019). https://doi.org/10.3390/e21030297

    Article  CAS  Google Scholar 

  25. Y. Iijima, K. Hirano, Interdiffusion in Co-Pd alloys. Trans. JIM 13(6), 419–424 (1972). https://doi.org/10.2320/matertrans1960.13.419

    Article  CAS  Google Scholar 

  26. M.-H. Tsai, J.-W. Yeh, H.-E. Alloys, High-entropy alloys: a critical review. Mater. Res. Lett. 2(3), 107–123 (2014). https://doi.org/10.1080/21663831.2014.912690

  27. J.-W. Yeh, S.-K. Chen, S.-J. Lin, J.-Y. Gan, T.-S. Chin, T.-T. Shun, C.-H. Tsau, S.-Y. Chang, Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv. Eng. Mater. 6(5), 299–303 (2004). https://doi.org/10.1002/adem.200300567

    Article  CAS  Google Scholar 

  28. I. Toda-Caraballo, P.E.J. Rivera-Díaz-del-Castillo, Modelling solid solution hardening in high entropy alloys. Acta Mater. 85, 14–23 (2015). https://doi.org/10.1016/j.actamat.2014.11.014

    Article  CAS  Google Scholar 

  29. Y.Z. Xia, H. Bei, Y.F. Gao, D. Catoor, E.P. George, Synthesis, characterization, and nanoindentation response of single crystal Fe-Cr-Ni alloys with FCC and BCC structures. Mater. Sci. Eng. A 611, 177–187 (2014). https://doi.org/10.1016/j.msea.2014.05.079

    Article  CAS  Google Scholar 

  30. H.W. King. Quantitative size-factors for metallic solid solutions, J. Mater. Sci. 1, 79–90 (1966) . https://doi.org/10.1007/BF00549722

  31. S. Yoshida, T. Ikeuchi, T. Bhattacharjee, Y. Bai, A. Shibata, N. Tsuji, Effect of elemental combination on friction stress and hall-petch relationship in face-centered cubic high / medium entropy alloys. Acta Mater. 171, 201–215 (2019). https://doi.org/10.1016/j.actamat.2019.04.017

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 52001271). F. M. appreciates the support from Natural Science Foundation of Shandong Province (ZR2021QE110).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yang Tong or Shuying Chen.

Ethics declarations

Competing Interests

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Jingbo Qiao and Hongmin Zhang contributed equally to this work.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiao, J., Zhang, H., Meng, H. et al. Compositional Dependence of the Recrystallization and Grain Growth in Strongly-distorted Pd-containing Multi-Component Equiatomic Alloys. Met. Mater. Int. 30, 380–392 (2024). https://doi.org/10.1007/s12540-023-01500-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-023-01500-z

Keywords

Navigation