Skip to main content
Log in

Effect of Bimodal Grain Structure on the Yielding Behavior of Commercial Purity Titanium Under Quasi-static Tension

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

In this work, a bimodal grain structure was developed for commercial purity Ti(CP-Ti) via powder metallurgy processing, followed by free hot forging and then heat treatment. The bi-modal grains were characterized with electron backscatter diffraction. The mechanical tests showed that in comparison to the uniform and equiaxed grain structure, the bimodal grains improved the yield strength of CP-Ti significantly, while it maintains a merely changed ultimate tensile strength and elongation to failure. In addition, an interesting yield plateau was observed in the bimodal CP-Ti. To explore underlying mechanisms behind the phenomenon, the microstructures of the samples before and after testing were carefully examined. The results revealed that geometrically necessary dislocations accumulating at the interface between coarse and fine grains induced back stress hardening, which together with the statistically stored dislocations also accounted for the yield plateau in the bimodal CP-Ti.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The raw/processed data required to reproduce these findings cannot be shared at this time as the data also forms part of an ongoing study.

References

  1. X.-Q. Wang, Y.-S. Zhang, W.-Z. Han, Design of high strength and wear-resistance β-Ti alloy via oxygen-charging. Acta Mater. 227, 117686 (2022)

    CAS  Google Scholar 

  2. Z. Yang, W. Xu, W. Zhang, Y. Chen, D. Shan, Effect of power spinning and heat treatment on microstructure evolution and mechanical properties of duplex low-cost titanium alloy. J. Mater. Sci. Technol. 136, 121–139 (2023)

    Google Scholar 

  3. G. Zheng, B. Tang, S. Zhao, W.Y. Wang, X. Chen, L. Zhu, J. Li, Evading the strength-ductility trade-off at room temperature and achieving ultrahigh plasticity at 800 ℃ in a TiAl alloy. Acta Mater. 225, 117585 (2022)

    CAS  Google Scholar 

  4. C.W. Shao, P. Zhang, Y.K. Zhu, Z.J. Zhang, Y.Z. Tian, Z.F. Zhang, Simultaneous improvement of strength and plasticity: additional work-hardening from gradient microstructure. Acta Mater. 145, 413–428 (2018)

    CAS  Google Scholar 

  5. H.H. Lee, H.K. Park, J. Jung, K.J. Hwang, H.S. Kim, Microstructural tailoring in reverse gradient-structured copper sheet using single-roll angular-rolling and subsequent annealing. Mater. Sci. Eng. A 764, 138258 (2019)

    CAS  Google Scholar 

  6. J. Yan, Q. Lai, J. Wang, Y. Shen, Saturation controlled softening/hardening in pure aluminum processed by surface rotation rolling. Scr. Mater. 182, 104–108 (2020)

    CAS  Google Scholar 

  7. P. Wang, Z. Chen, H. Huang, J. Lin, B. Li, Q. Liu, Fabrication of Ti/Al/Mg laminated composites by hot roll bonding and their microstructures and mechanical properties. Chin. J. Aeronaut. 34(8), 192–201 (2021)

    Google Scholar 

  8. M. Zha, X.H. Zhang, H. Zhang, J. Yao, C. Wang, H.Y. Wang, T.T. Feng, Q.C. Jiang, Achieving bimodal microstructure and enhanced tensile properties of Mg–9Al–1Zn alloy by tailoring deformation temperature during hard plate rolling (HPR). J. Alloys Compd. 765, 1228–1236 (2018)

    CAS  Google Scholar 

  9. R. Ma, C. Peng, Z. Cai, R. Wang, Z. Zhou, X. Li, X. Cao, Effect of bimodal microstructure on the tensile properties of selective laser melt Al–Mg–Sc–Zr alloy. J. Alloys Compd. 815, 152422 (2020)

    CAS  Google Scholar 

  10. Y. Wang, M. Chen, F. Zhou, E. Ma, High tensile ductility in a nanostructured metal. Nature 419(6910), 912–915 (2002)

    CAS  Google Scholar 

  11. S. Fu, J. Liu, Z. Wang, Strain hardening behavior of Ni-carbonyl Chemical Vapor Deposited (CVD) material with bimodal grain structures: ultrafine (UF) grains and large grains with UF/nano twins. Mater. Sci. Eng. A 751, 253–262 (2019)

    CAS  Google Scholar 

  12. X. Wu, M. Yang, F. Yuan, G. Wu, Y. Wei, X. Huang, Y. Zhu, Heterogeneous lamella structure unites ultrafine-grain strength with coarse-grain ductility. Proc. Natl. Acad. Sci. U S A 112(47), 14501–14505 (2015)

    CAS  Google Scholar 

  13. X.L. Wu, M.X. Yang, F.P. Yuan, L. Chen, Y.T. Zhu, Combining gradient structure and TRIP effect to produce austenite stainless steel with high strength and ductility. Acta Mater. 112, 337–346 (2016)

    CAS  Google Scholar 

  14. H. Du, Y. An, Y. Wei, X. Liu, L. Hou, B.-S. Liu, M.-M. Liu, P.K. Liaw, Experimental and numerical studies on strength and ductility of gradient-structured iron plate obtained by surface mechanical-attrition treatment. Mater. Sci. Eng. A 744, 471–480 (2019)

    CAS  Google Scholar 

  15. Y. Zhang, Z. Cheng, L. Lu, T. Zhu, Strain gradient plasticity in gradient structured metals. J. Mech. Phys. Solids 140, 103946 (2020)

    CAS  Google Scholar 

  16. X. Fu, Z. Yu, Z. Tan, G. Fan, P. Li, M. Wang, D.-B. Xiong, Z. Li, Enhanced strain hardening by bimodal grain structure in carbon nanotube reinforced Al–Mg composites. Mater. Sci. Eng. A 803, 140726 (2021)

    CAS  Google Scholar 

  17. N. Tsuchida, H. Masuda, Y. Harada, K. Fukaura, Y. Tomota, K. Nagai, Effect of ferrite grain size on tensile deformation behavior of a ferrite-cementite low carbon steel. Mater. Sci. Eng. A 488(1–2), 446–452 (2008)

    Google Scholar 

  18. M.R. Barnett, M.D. Nave, A. Ghaderi, Yield point elongation due to twinning in a magnesium alloy. Acta Mater. 60(4), 1433–1443 (2012)

    CAS  Google Scholar 

  19. R. Schwab, V. Ruff, On the nature of the yield point phenomenon. Acta Mater. 61(5), 1798–1808 (2013)

    CAS  Google Scholar 

  20. H. Shi, X. Guo, J. Li, J. Mao, W. Lu, The gradual disappearance of yield plateau in Zr–Sn–Nb–Fe–Mo alloy by the trace addition of Cr and V. Mater. Sci. Eng. A 760, 407–414 (2019)

    CAS  Google Scholar 

  21. H. Shi, J. Li, J. Mao, W. Lu, The elimination of the yield point phenomenon in a new zirconium alloy: influence of degree of recrystallization on the tensile properties. Scr. Mater. 169, 28–32 (2019)

    CAS  Google Scholar 

  22. H. Shi, J. Li, J. Mao, W. Lu, The gradual disappearance and re-appearance of yield drop by modulating the pre-strain history in a new zirconium alloy: dislocation decomposition and recombination. Scr. Mater. 188, 280–284 (2020)

    CAS  Google Scholar 

  23. W. Wen, J.G. Morris, The effect of cold rolling and annealing on the serrated yielding phenomenon of AA5182 aluminum alloy. Mater. Sci. Eng. A 373(1–2), 204–216 (2004)

    Google Scholar 

  24. A. Momeni, S.M. Abbasi, M. Morakabati, A. Akhondzadeh, Yield point phenomena in TIMETAL 125 beta Ti alloy. Mater. Sci. Eng. A 643, 142–148 (2015)

    CAS  Google Scholar 

  25. J. Wang, M.R.G. Ferdowsi, S.R. Kada, C.R. Hutchinson, M.R. Barnett, Influence of precipitation on yield elongation in Mg–Zn alloys. Scr. Mater. 160, 5–8 (2019)

    CAS  Google Scholar 

  26. Z. Li, L. Fu, B. Fu, A. Shan, Yield point elongation in fine-grained titanium. Mater. Lett. 96, 1–4 (2013)

    CAS  Google Scholar 

  27. M. Rezaee, A. Zarei-Hanzaki, A. Mohamadizadeh, E. Ghasemi, High-temperature flow characterization and microstructural evolution of Ti6242 alloy: yield drop phenomenon. Mater. Sci. Eng. A 673, 346–354 (2016)

    CAS  Google Scholar 

  28. X. Shi, Z. Cao, Z. Fan, R. Guo, J. Qiao, Probing into the yield plateau phenomenon in commercially pure Titanium during Tensile tests. Acta Metall. Sin. (Engl. Lett.) 34(5), 701–709 (2020)

    Google Scholar 

  29. J. Shen, B. Chen, J. Umeda, J. Zhang, Y. Li, K. Kondoh, An in-situ study on deformation and cracking initiation in oxygen-doped commercial purity titanium. Mech. Mater. 148, 103519 (2020)

    Google Scholar 

  30. K. Chen, D.J. Huang, H. Li, N. Jia, W. Chong, Avoiding abnormal grain growth when annealing selective laser melted pure titanium by promoting nucleation. Scr. Mater. 209, 114377 (2022)

    CAS  Google Scholar 

  31. J. Zhang, Y. Liu, M. Bayat, Q. Tan, Y. Yin, Z. Fan, S. Liu, J.H. Hattel, M. Dargusch, M.-X. Zhang, Achieving high ductility in a selectively laser melted commercial pure-titanium via in-situ grain refinement. Scr. Mater. 191, 155–160 (2021)

    CAS  Google Scholar 

  32. F. Yan, W. Xiong, E. Faierson, G.B. Olson, Characterization of nano-scale oxides in austenitic stainless steel processed by powder bed fusion. Scr. Mater. 155, 104–108 (2018)

    CAS  Google Scholar 

  33. O.O. Salman, C. Gammer, A.K. Chaubey, J. Eckert, S. Scudino, Effect of heat treatment on microstructure and mechanical properties of 316L steel synthesized by selective laser melting. Mater. Sci. Eng. A 748, 205–212 (2019)

    CAS  Google Scholar 

  34. T. Kusama, T. Omori, T. Saito, S. Kise, T. Tanaka, Y. Araki, R. Kainuma, Ultra-large single crystals by abnormal grain growth. Nat. Commun. 8(1), 354 (2017)

    Google Scholar 

  35. X. Li, J.J. Shi, G.H. Cao, A.M. Russell, Z.J. Zhou, C.P. Li, G.F. Chen, Improved plasticity of Inconel 718 superalloy fabricated by selective laser melting through a novel heat treatment process. Mater. Des. 180, 107915 (2019)

    CAS  Google Scholar 

  36. M. Jafari, M. Jamshidian, S. Ziaei-Rad, D. Raabe, F. Roters, Constitutive modeling of strain induced grain boundary migration via coupling crystal plasticity and phase-field methods. Int. J. Plast. 99, 19–42 (2017)

    CAS  Google Scholar 

  37. H. Wang, Q. Chao, L. Yang, M. Cabral, Z.Z. Song, B.Y. Wang, S. Primig, W. Xu, Z.B. Chen, S.P. Ringer, X.Z. Liao, Introducing transformation twins in titanium alloys: an evolution of α-variants during additive manufacturing. Mater. Res. Lett. 9(3), 119–126 (2020)

    CAS  Google Scholar 

  38. G.C. Obasi, S. Birosca, J. Quinta da Fonseca, M. Preuss, Effect of β grain growth on variant selection and texture memory effect during α→β→α phase transformation in Ti–6 Al–4V. Acta Mater. 60(3), 1048–1058 (2012)

    CAS  Google Scholar 

  39. Y. Chen, L. Jin, J. Dong, Z. Zhang, F. Wang, Twinning effects on the hot deformation behavior of AZ31Mg alloy. Mater. Charact. 118, 363–369 (2016)

    CAS  Google Scholar 

  40. J. Fan, J. Li, Y. Zhang, H. Kou, L. Germain, N. Siredey-Schwaller, C. Esling, Microstructure and crystallography of α phase nucleated dynamically during thermo-mechanical treatments in metastable β. Titan. Alloy Adv. Eng. Mater. 19(7), 1600859 (2017)

    Google Scholar 

  41. L.P. Kubin, A. Mortensen, Geometrically necessary dislocations and strain-gradient plasticity: a few critical issues. Scr. Mater. 48(2), 119–125 (2003)

    CAS  Google Scholar 

  42. C. Moussa, M. Bernacki, R. Besnard, N. Bozzolo, About quantitative EBSD analysis of deformation and recovery substructures in pure Tantalum. IOP Conf. Ser. Mater. Sci. Eng. 89, 012038 (2015)

    Google Scholar 

  43. W.G. Johnston, J.J. Gilman, D. Velocities, Dislocation densities, and Plastic Flow in Lithium Fluoride crystals. J. Appl. Phys. 30(2), 129–144 (1959)

    CAS  Google Scholar 

  44. H. Conrad, Effect of interstitial solutes on the strength and ductility of titanium. Prog. Mater. Sci. 26(2), 123–403 (1981)

    CAS  Google Scholar 

  45. J. Kacher, B.P. Eftink, B. Cui, I.M. Robertson, Dislocation interactions with grain boundaries. Curr. Opin. Solid State Mater. Sci. 18(4), 227–243 (2014)

    CAS  Google Scholar 

  46. M.-S. Lee, A.R. Jo, S.-K. Hwang, Y.-T. Hyun, T.-S. Jun, The role of strain rate and texture in the deformation of commercially pure titanium at cryogenic temperature. Mater. Sci. Eng. A 827, 142042 (2021)

    CAS  Google Scholar 

  47. W. Shi, S. Lu, J. Shen, B. Chen, J. Umeda, Q. Wei, K. Kondoh, Y. Li, ASB induced phase transformation in high oxygen doped commercial purity Ti. Mater. Sci. Eng. A 830, 142321 (2022)

    CAS  Google Scholar 

  48. A.H. Cottrell, B.A. Bilby, Dislocation theory of yielding and strain ageing of iron. Proc. Phys. Soc. Sect. A 62(1), 49–62 (1949)

    Google Scholar 

  49. G. Schoeck, A. Seeger, The flow stress of iron and its dependence on impurities. Acta Metall. 7(7), 469–477 (1959)

    CAS  Google Scholar 

  50. N.G. Turner, W.T. Roberts, Dynamic strain ageing in titanium. J. Less Common Met. 16(1), 37–44 (1968)

    CAS  Google Scholar 

  51. A.T. Santhanam, R.E. Reed-Hill, Work hardening peaks in α-titanium. Scr. Metall. 4(7), 529–531 (1970)

    CAS  Google Scholar 

  52. S.N. Monteiro, R.E. Reed-Hill, An empirical analysis of titanium stress-strain curves. Metall. Trans. 4(4), 1011–1015 (1973)

    CAS  Google Scholar 

  53. A.T. Churchman, The yield phenomena, kink bands and geometric softening in titanium crystals. Acta Metall. 3(1), 22–29 (1955)

    CAS  Google Scholar 

  54. H. Mughrabi, On the current understanding of strain gradient plasticity. Mater. Sci. Eng. A 387–389, 209–213 (2004)

    Google Scholar 

  55. D. Akama, N. Nakada, T. Tsuchiyama, S. Takaki, A. Hironaka, Discontinuous yielding induced by the addition of nickel to interstitial-free steel. Scr. Mater. 82, 13–16 (2014)

    CAS  Google Scholar 

  56. X. Ma, C. Huang, J. Moering, M. Ruppert, H.W. Höppel, M. Göken, J. Narayan, Y. Zhu, Mechanical properties of copper/bronze laminates: role of interfaces. Acta Mater. 116, 43–52 (2016)

    CAS  Google Scholar 

  57. H. Zhi, C. Zhang, S. Antonov, H. Yu, T. Guo, Y. Su, Investigations of dislocation-type evolution and strain hardening during mechanical twinning in Fe–22Mn–0.6 C twinning-induced plasticity steel. Acta Mater. 195, 371–382 (2020)

    CAS  Google Scholar 

  58. N. Wang, Y. Chen, G. Wu, Q. Zhao, Z. Zhang, L. Zhu, J. Luo, Non-equivalence contribution of geometrically necessary dislocation and statistically stored dislocation in work-hardened metals. Mater. Sci. Eng. A 836, 142728 (2022)

    CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (11802247) and the 111 Project (No. BP0719007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianghua Shen.

Ethics declarations

Conflict of interest

The authors declare that they have no financial and personal relationships with other people or organizations that can inappropriately influence our work.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, X., Wang, X., Chen, B. et al. Effect of Bimodal Grain Structure on the Yielding Behavior of Commercial Purity Titanium Under Quasi-static Tension. Met. Mater. Int. 29, 2207–2215 (2023). https://doi.org/10.1007/s12540-022-01373-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-022-01373-8

Keywords

Navigation