Skip to main content
Log in

Achieving Improved/Reversed Tension–Compression Asymmetry by Tailoring Extrusion Processing for Mg–Sn(–Y) Alloy

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

Significant tension-compression (T–C) yield asymmetry in common wrought Mg alloys hinders their widespread applications. A double extrusion process with variable speed and partially substituted yttrium (Y) (2 wt%) for Sn was proposed to improve the T–C asymmetry of Mg–2.5Sn (wt%) alloy, and then to explore the critical grain size parameter for T–C symmetry. The result showed that the individual double extrusion or partial substitution of Sn by Y slightly refined the grains of Mg–2.5Sn alloy (from ~ 42.5 µm to 35.5 µm and 31.2 µm, respectively), along with the improved T–C asymmetry (CYS/TYS) from 0.44 to 0.51 and 0.75, respectively. When combining the above two factors, the double-extruded Mg–Sn–Y alloys obtained fine grains with ~ 8.8 µm and gained a T–C yield symmetry (CYS/TYS = 1.01). By tailoring the extrusion speed from the previous 1.2 mm/s to 2 mm/s, the grain size of double-extruded Mg–Sn–Y further deduced to ~ 5.6 µm and turned to be a reversed T–C asymmetry (CYS/TYS) of 1.37. The refined grain size combined with weakened texture led to a decreased activation or even inhibition of tension twinning and increased activation of non-basal slip, which might be the main reason for the improved or even reversed T–C asymmetry in double-extruded Mg–0.5Sn–2Y.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. X. Zhuo, L. Zhao, W. Gao, Y. Wu, H. Liu, P. Zhang, Z. Hu, J. Jiang, A. Ma, J. Mater. Res. Technol. 21, 186–211 (2022)

    Article  CAS  Google Scholar 

  2. C. Liu, H. Chen, M. Song, J.-F. Nie, J. Magnes. Alloy. 10, 1909–1914 (2022)

    Article  CAS  Google Scholar 

  3. D. Bovand, H. Abdollah-Pour, O. Mirzaee, S. Bagherifard, J. Mater. Eng. Perform. 31, 6835–6845 (2022)

    Article  CAS  Google Scholar 

  4. L. Zhong, Y. Wang, Y. Dou, J. Magnes. Alloy. 7, 637–647 (2019)

    Article  CAS  Google Scholar 

  5. A. Orozco-Caballero, D. Lunt, J.D. Robson, and J. Quinta da Fonseca. Acta Mater. 133, 367–379 (2017)

    Article  CAS  Google Scholar 

  6. S.A. Habib, A.S. Khan, T. Gnäupel-Herold, J.T. Lloyd, S.E. Schoenfeld, Int. J. Plasticity 95, 163–190 (2017)

    Article  CAS  Google Scholar 

  7. H. Li, C. Yu, G. Kang, Int. J. Plasticity 152, 103242 (2022)

    Article  CAS  Google Scholar 

  8. T. Li, J. Rao, J. Zheng, D. Yin, H. Shou, Y. Zhang, R. Shi, W. Jing, L. Xia, J. Magnes. Alloy. 10, 1581–1597 (2022)

    Article  CAS  Google Scholar 

  9. B. Shi, C. Yang, Y. Peng, F. Zhang, F. Pan, J. Magnes. Alloy. 10, 1476–1510 (2022)

    Article  CAS  Google Scholar 

  10. Q. Wang, B. Jiang, D. Chen, Z. Jin, L. Zhao, Q. Yang, G. Huang, F. Pan, J. Mater. Sci. 56, 12965–12998 (2021)

    Article  CAS  Google Scholar 

  11. S. Sandlöbes, S. Zaefferer, I. Schestakow, S. Yi, R. Gonzalez-Martinez, Acta Mater. 59, 429–439 (2011)

    Article  Google Scholar 

  12. X. Wang, L. Jiang, D. Zhang, I.J. Beyerlein, S. Mahajan, T.J. Rupert, E.J. Lavernia, J.M. Schoenung, Acta Mater. 146, 12–24 (2018)

    Article  CAS  Google Scholar 

  13. E. Dogan, I. Karaman, G. Ayoub, G. Kridli, Mater. Sci. Eng. A 610, 220–227 (2014)

    Article  CAS  Google Scholar 

  14. X.Y. Qian, Y. Zeng, B. Jiang, Q.R. Yang, Y.J. Wan, G.F. Quan, F.S. Pan, J. Alloy. Compd. 820, 153122 (2020)

    Article  CAS  Google Scholar 

  15. A.E. Davis, J.D. Robson, M. Turski, Mater. Sci. Eng. A 744, 525–537 (2019)

    Article  CAS  Google Scholar 

  16. D.D. Yin, C.J. Boehlert, L.J. Long, G.H. Huang, H. Zhou, J. Zheng, Q.D. Wang, Int. J. Plasticity 136, 102878 (2021)

    Article  CAS  Google Scholar 

  17. H.D. Zhao, G.W. Qin, Y.P. Ren, W.L. Pei, Y. Guo, J. Alloy. Compd. 481, 140–143 (2009)

    Article  CAS  Google Scholar 

  18. L. Wang, G. Huang, Q. Quan, P. Bassani, E. Mostaed, M. Vedani, F. Pan, Mater. Design 63, 177–184 (2014)

    Article  CAS  Google Scholar 

  19. G. Shi, J. Yuan, T. Li, K. Zhang, X. Li, Y. Li, M. Ma, Mater. Sci. Eng. A 774, 138906 (2020)

    Article  CAS  Google Scholar 

  20. I. Basu, T. Al-Samman, Acta Mater. 96, 111–132 (2015)

    Article  CAS  Google Scholar 

  21. N. Stanford, M.R. Barnett, Mater. Sci. Eng. A 496, 399–408 (2008)

    Article  Google Scholar 

  22. C.J. Geng, B.L. Wu, X.H. Du, Y.D. Wang, Y.D. Zhang, F. Wagner, C. Esling, Mater. Sci. Eng. A 559, 307–313 (2013)

    Article  CAS  Google Scholar 

  23. J. Jain, W.J. Poole, C.W. Sinclair, M.A. Gharghouri, Scripta Mater. 62, 301–304 (2010)

    Article  CAS  Google Scholar 

  24. M. Lentz, M. Klaus, I.J. Beyerlein, M. Zecevic, W. Reimers, M. Knezevic, Acta Mater. 86, 254–268 (2015)

    Article  CAS  Google Scholar 

  25. Z. Fan, F. Gao, Y. Wang, H. Men, L. Zhou, Prog. Mater. Sci. 123, 100809 (2022)

    Article  Google Scholar 

  26. Z. Fan, Y. Wang, M. Xia, S. Arumuganathar, Acta Mater. 57, 4891–4901 (2009)

    Article  CAS  Google Scholar 

  27. B.S. Murty, S.A. Kori, M. Chakraborty, Int. Mater. Rev. 47, 3–29 (2013)

    Article  Google Scholar 

  28. D. Shu, B. Sun, J. Mi, P.S. Grant, Acta Mater. 59, 2135–2144 (2011)

    Article  CAS  Google Scholar 

  29. T.E. Quested, A.T. Dinsdale, A.L. Greer, Acta Mater. 53, 1323–1334 (2005)

    Article  CAS  Google Scholar 

  30. Y. Zeng, B. Jiang, M.X. Zhang, H.M. Yin, R.H. Li, F.S. Pan, Intermetallics 45, 18–23 (2014)

    Article  CAS  Google Scholar 

  31. M.R. Barnett, Z. Keshavarz, A.G. Beer, D. Atwell, Acta Mater. 52, 5093–5103 (2004)

    Article  CAS  Google Scholar 

  32. A. Akhtar, E. Teghtsoonian, Acta Metall. 17, 1339–1349 (1969)

    Article  CAS  Google Scholar 

  33. Y.Z. Du, M.Y. Zheng, X.G. Qiao, K. Wu, X.D. Liu, G.J. Wang, X.Y. Lv, M.J. Li, X.L. Liu, Z.J. Wang, Y.T. Liu, Mater. Sci. Eng. A 583, 69–77 (2013)

    Article  CAS  Google Scholar 

  34. J.D. Robson, N. Stanford, M.R. Barnett, Scripta Mater. 63, 823–826 (2010)

    Article  CAS  Google Scholar 

  35. J.D. Robson, Acta Mater. 121, 277–287 (2016)

    Article  CAS  Google Scholar 

  36. Z. Wu, R. Ahmad, B. Yin, S. Sandlöbes, W.A. Curtin, Science 359, 447–452 (2018)

    Article  Google Scholar 

  37. D. Zhang, H. Wen, M.A. Kumar, F. Chen, L. Zhang, I.J. Beyerlein, J.M. Schoenung, S. Mahajan, E.J. Lavernia, Acta Mater. 120, 75–85 (2016)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the National Natural Science Foundation of China (52004227, 52171125 and U1764253), Jihua Laboratory and GuangDong Basic and Applied Basic Research Foundation (2020A1515110262), Fundamental Research Funds for the Central Universities (2682020ZT114), and the Fundamental Research Funds for Southwest Jiaotong University (2682021ZTPY001). We also thank the Analytical and Testing Center of Southwest Jiaotong University for assistance with EBSD experiments.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dabiao Xia or Dongdi Yin.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, Y., Xiong, X., Qian, X. et al. Achieving Improved/Reversed Tension–Compression Asymmetry by Tailoring Extrusion Processing for Mg–Sn(–Y) Alloy. Met. Mater. Int. 29, 1885–1895 (2023). https://doi.org/10.1007/s12540-022-01357-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-022-01357-8

Keywords

Navigation