Skip to main content
Log in

Focused Review on Cu–Ni–Sn Spinodal Alloys: From Casting to Additive Manufacturing

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

The present review article evaluates the research and progress status of Cu–Ni–Sn-based spinodal alloys focussed on the methods and technologies implemented to enhance the properties of cast Cu–Ni–Sn alloys in industrial applications, particularly in components such as bearings, bushings, propellers, and impellers that find extensive demand in the marine and automotive industry. The review introduces the limitations of employing copper-beryllium alloys in the industry and discusses how Cu–Ni–Sn alloys represent a potential alternative. Subsequently, a comprehensive overview of spinodal decomposition is provided, considering the thermodynamic aspects and the Cu–Ni–Sn ternary phase diagram. The processing of Cu–Ni–Sn alloys via traditional casting is explored with an overview of various casting techniques and ensuing microstructure-property relationships. The two significant limitations, segregation during solidification and discontinuous precipitation, are highlighted. Strategies to overcome these limitations, such as precipitation hardening, spinodal decomposition, thermo-mechanical processing, and composition design (with the effect of varying elemental additions), are further elaborated. The review summarises novel processing routes encompassing mechanical alloying, rapid solidification, powder metallurgy, and spray deposition for developing spinodal Cu–Ni–Sn alloys. Finally, the progress in fabricating Cu–Ni–Sn spinodal alloys using additive manufacturing techniques such as selective laser melting is highlighted. There are published review papers on the wrought processing of Cu–Ni–Sn alloys, so this area has not been covered here. Overall, this review article is intended to streamline an overview of the characteristics and gradual developments from cast Cu–Ni–Sn spinodal alloys to additive manufacturing-based Cu–Ni–Sn spinodal alloys.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. A.T. Hoang, L.H. Nguyen, D.N. Nguyen, A study of mechanical properties and conductivity capability of Cu–9Ni–3Sn alloy. Int. J. Appl. Eng. Res. 13(7), 5120–5126 (2018)

    Google Scholar 

  2. L.H. Schwartz, S. Mahajan, J.T. Plewes, Spinodal decomposition in a Cu-9 wt% Ni-6 wt% Sn alloy. Acta Metall. 22(5), 601–609 (1974). https://doi.org/10.1016/0001-6160(74)90157-6

    Article  CAS  Google Scholar 

  3. W. Raymond Cribb, M.J. Gedeon, F.C. Grensing, Performance advances in copper-nickel-tin spinodal alloys. Adv. Mater. Process. 171(9), 20–25 (2013)

    Google Scholar 

  4. C.R. Schuler, M.S. Kent, D.C. Deubner, M.T. Berakis, M. McCawley, P.K. Henneberger, M.D. Rossman, K. Kreiss, Process-related risk of beryllium sensitization and disease in a copper-beryllium alloy facility. Am. J. Ind. Med. 47(3), 195–205 (2005). https://doi.org/10.1002/ajim.20140

    Article  CAS  Google Scholar 

  5. K.V. Shankar, R. Sellamuthu, Determination on the effect of tin content on microstructure, hardness, optimum aging temperature and aging time for spinodal bronze alloys cast in metal mold. Int. J. Metalcast. 11(2), 189–194 (2017). https://doi.org/10.1007/s40962-016-0034-6

    Article  Google Scholar 

  6. C.R. Scorey, S. Chin, M.J. White, R.J. Livak, Spinodal Cu–Ni–Sn alloys for electronic applications. JOM J. Miner. Met. Mater. Soc. 36(11), 52–54 (1984). https://doi.org/10.1007/BF03338616

    Article  CAS  Google Scholar 

  7. F. Findik, Modulated (Spinodal) Alloys. Period. Eng. Nat. Sci.: PEN (2013). https://doi.org/10.21533/pen.v1i1.16

    Article  Google Scholar 

  8. S. Du, X. Wang, Z. Li, Z. Yang, J. Wang, Effect of Ni content on microstructure and characterization of Cu–Ni–Sn alloys. Materials (2018). https://doi.org/10.3390/ma11071108

    Article  Google Scholar 

  9. F. Findik, Discontinuous (cellular) precipitation. J. Mater. Sci. Lett. 17, 79–83 (1998). https://doi.org/10.1023/A:1006510228181

    Article  CAS  Google Scholar 

  10. F. Findik, H.M. Flower, Morphological changes and hardness evolution in Cu–30Ni–5Cr and Cu–45Ni–15Cr spinodal alloys. Mater. Sci. Technol. 9(5), 408–416 (1993). https://doi.org/10.1179/mst.1993.9.5.408

    Article  CAS  Google Scholar 

  11. F. Findik, H.M. Flower, Microstructure and hardness development in Cu–30Ni–2·5Cr and Cu–45Ni–10Cr spinodal alloys. Mater. Sci. Technol. 8(3), 197–205 (1992). https://doi.org/10.1179/mst.1992.8.3.197

    Article  CAS  Google Scholar 

  12. F. Findik, Observations on particle size/spacing relationships and phase equilibria in the Cu–Ni–Cr system. J. Mater. Sci. 28, 5056–5059 (1993). https://doi.org/10.1007/BF00361178

    Article  CAS  Google Scholar 

  13. M. Karthik, J. Abhinav, K.V. Shankar, Morphological and mechanical behaviour of Cu–Sn alloys—a review. Met. Mater. Int. 27(7), 1915–1946 (2021). https://doi.org/10.1007/s12540-020-00899-z

    Article  CAS  Google Scholar 

  14. J.W. Gibbs, Collected Works (Yale University Press, New Haven, 1948), pp. 105–115 and pp. 252–258

  15. E.P. Favvas, A.C. Mitropoulos, What is spinodal decomposition? J. Eng. Sci. Technol. Rev. 1(1), 25–27 (2008). https://doi.org/10.25103/jestr.011.05

    Article  CAS  Google Scholar 

  16. J.W. Cahn, J.E. Hilliard, Free energy of a nonuniform system. I. Interfacial free energy. J. Chem. Phys. 28(2), 258–267 (1958). https://doi.org/10.1063/1.1744102

    Article  CAS  Google Scholar 

  17. K.V. Shankar, Development of High Strength Copper Based Spinodal Alloy Cast in Metal Mould. PhD thesis. Amrita Vishwa Vidyapeetham (2017)

  18. V. Vuorinen, H. Yu, T. Laurila et al., Formation of intermetallic compounds between liquid Sn and various CuNix metallizations. J. Electron. Mater. 37, 792–805 (2008). https://doi.org/10.1007/s11664-008-0411-x

    Article  CAS  Google Scholar 

  19. C.M. Gourlay, K. Nogita, J. Read et al., Intermetallic formation and fluidity in Sn-rich Sn–Cu–Ni alloys. J. Electron. Mater. 39, 56–69 (2010). https://doi.org/10.1007/s11664-009-0962-5

    Article  CAS  Google Scholar 

  20. H.M. Henao, C. Chu, J.P. Solis, K. Nogita, Experimental determination of the Sn–Cu–Ni phase diagram for pb-free solder applications. Metall. Mater. Trans. B Process Metall. Mater. Process. Sci. 50(1), 502–516 (2019). https://doi.org/10.1007/s11663-018-1456-8

    Article  CAS  Google Scholar 

  21. J.-C. Zhao, M. Notis, Spinodal decomposition, ordering transformation, and discontinuous precipitation in a Cu–15Ni–8Sn alloy. Acta Mater. 46(12), 4203–4218 (1998). https://doi.org/10.1016/s1359-6454(98)00095-0

    Article  CAS  Google Scholar 

  22. F. Findik, Improvements in spinodal alloys from past to present. Mater. Des. 42, 131–146 (2012). https://doi.org/10.1016/j.matdes.2012.05.039

    Article  CAS  Google Scholar 

  23. D.J. Seol, S.Y. Hu, Y.L. Li et al., Three-dimensional phase-field modeling of spinodal decomposition in constrained films. Met. Mater. Int. 9, 61–66 (2003). https://doi.org/10.1007/BF03027232

    Article  Google Scholar 

  24. M.U. Kim, J.P. Ahn, H.K. Seok et al., Application of spinodal decomposition to produce metallic glass matrix composite with simultaneous improvement of strength and plasticity. Met. Mater. Int. 15, 193–196 (2009). https://doi.org/10.1007/s12540-009-0193-6

    Article  CAS  Google Scholar 

  25. Y. Jiang, Z. Li, Z. Xiao, Y. Xing, Y. Zhang, M. Fang, Microstructure and properties of a Cu–Ni–Sn alloy treated by two-stage thermomechanical processing. JOM 71(8), 2734–2741 (2019). https://doi.org/10.1007/s11837-019-03606-5

    Article  CAS  Google Scholar 

  26. F. Sadi, C. Servant, Phase transformations and phase diagram at equilibrium in the Cu–Ni–Sn system. J. Therm. Anal. Calorim. 90(2), 319–323 (2007). https://doi.org/10.1007/s10973-007-8347-6

    Article  CAS  Google Scholar 

  27. U. Prakash, R.A. Buckley, H. Jones et al., DO22 to L12 transition in intermetallic systems. J. Mater. Sci. 27, 2001–2004 (1992). https://doi.org/10.1007/BF01117910

    Article  CAS  Google Scholar 

  28. S. Ilangovan, J. Sreejith, M. Manideep, S. Harish, An experimental investigation of Cu–Ni–Sn alloy on microstructure, hardness and wear parameters optimization using DOE. Tribol. Ind. 40(1), 156–163 (2018). https://doi.org/10.24874/ti.2018.40.01.15

    Article  Google Scholar 

  29. K.V. Shankar, R. Sellamuthu, Determination of optimum aging temperature and time, mechanical and wear properties for Cu–9Ni–6Sn spinodal bronze alloy cast using permanent mould. Int. J. Mater. Eng. Innov. 8(1), 27–38 (2017). https://doi.org/10.1504/IJMATEI.2017.085809

    Article  Google Scholar 

  30. B. Alili, D. Bradai, P. Zieba, On the discontinuous precipitation reaction and solute redistribution in a Cu–15%Ni–8%Sn alloy. Mater. Charact. 59(10), 1526–1530 (2008). https://doi.org/10.1016/j.matchar.2008.01.007

    Article  CAS  Google Scholar 

  31. D. Tang, L. Wang, J. Li et al., Microstructure, element distribution, and mechanical property of Cu9Ni6Sn alloys by conventional casting and twin-roll casting. Metall. Mater. Trans. A 51, 1469–1474 (2020). https://doi.org/10.1007/s11661-020-05668-6

    Article  CAS  Google Scholar 

  32. R. Tewari, N.K. Sarkar, D. Harish, B. Vishwanadh, G.K. Dey, S. Banerjee, Intermetallics and alloys for high temperature applications, in Materials Under Extreme Conditions. ed. by A.K. Tyagi, S. Banerjee (Elsevier, Amsterdam, 2017), pp.293–335. https://doi.org/10.1016/B978-0-12-801300-7.00009-7

    Chapter  Google Scholar 

  33. C. Guo, Y. Shi, J. Chen, X. Xiao, B. Liu, J. Liu, B. Yang, Effects of P addition on spinodal decomposition and discontinuous precipitation in Cu–15Ni–8Sn alloy. Mater. Charact. 171, 110760 (2020). https://doi.org/10.1016/j.matchar.2020.110760

    Article  CAS  Google Scholar 

  34. J.K. Kim, P.K. Rohatgi, J.O. Choi et al., Wear properties and effect of molds on microstructure of graphite reinforced copper alloy composites made by centrifugal casting. Met. Mater. Int. 11, 333–340 (2005). https://doi.org/10.1007/BF03027338

    Article  CAS  Google Scholar 

  35. E. Lee, K. Euh, S.Z. Han et al., Tensile and electrical properties of direct aged Cu–Ni–Si–x%Ti alloys. Met. Mater. Int. 19, 183–188 (2013). https://doi.org/10.1007/s12540-013-2007-0

    Article  CAS  Google Scholar 

  36. S. Kobayashi, S. Tsurekawa, T. Watanabe, A new approach to grain boundary engineering for nanocrystalline materials. Beilstein J. Nanotechnol. 7(1), 1829–1849 (2016). https://doi.org/10.3762/BJNANO.7.176

    Article  CAS  Google Scholar 

  37. A. Das, V. Verma, C.B. Basak, Elucidating microstructure of spinodal copper alloy through annealing. Mater. Charact. 120, 152–158 (2016). https://doi.org/10.1016/j.matchar.2016.08.021

    Article  CAS  Google Scholar 

  38. Y. Geng, Y. Ban, B. Wang, X. Li, K. Song, Y. Zhang, Y. Jia, B. Tian, Y. Liu, A.A. Volinsky, A review of microstructure and texture evolution with nanoscale precipitates for copper alloys. J. Mater. Res. Technol. 9(5), 11918–11934 (2020). https://doi.org/10.1016/j.jmrt.2020.08.055

    Article  CAS  Google Scholar 

  39. B. Luo, D. Li, C. Zhao, Z. Wang, Z. Luo, W. Zhang, A low Sn content Cu–Ni–Sn alloy with high strength and good ductility. Mater. Sci. Eng. A (2018). https://doi.org/10.1016/j.msea.2018.12.120

    Article  Google Scholar 

  40. Z. Guo, J. Jie, S. Liu et al., Solidification characteristics and segregation behavior of Cu–15Ni–8Sn alloy. Metall. Mater. Trans. A 51, 1229–1241 (2020). https://doi.org/10.1007/s11661-019-05609-y

    Article  CAS  Google Scholar 

  41. C. Zhao, W. Zhang, Z. Wang, D. Li, Z. Luo, C. Yang, D. Zhang, Improving the mechanical properties of Cu–15Ni–8Sn alloys by addition of titanium. Materials (2017). https://doi.org/10.3390/ma10091038

    Article  Google Scholar 

  42. M. Yang, Y.L. Hu, X.N. Li, Z.M. Li, Y.H. Zheng, N.J. Lia, C. Dong, Compositional interpretation of high elasticity Cu–Ni–Sn alloys using cluster-plus-glue-atom model. J. Mater. Res. Technol. (2022). https://doi.org/10.1016/j.jmrt.2022.01.075

    Article  Google Scholar 

  43. Q.X. Yu, X.N. Li, K.R. Wei, Z.M. Li, Y.H. Zheng, N.J. Li, X.T. Cheng, C.Y. Wang, Q. Wang, C. Dong, Cu–Ni–Sn–Si alloys designed by cluster-plus-glue-atom model. Mater. Des. 167, 107641 (2019). https://doi.org/10.1016/j.matdes.2019.107641

    Article  CAS  Google Scholar 

  44. K.V. Shankar, R. Sellamuthu, An investigation on the effect of nickel content on the wear behaviour and mechanical properties of spinodal bronze alloy cast in metal mould. Int. J. Mater. Eng. Innov. 7(2), 89–103 (2016). https://doi.org/10.1504/IJMATEI.2016.079553

    Article  CAS  Google Scholar 

  45. D.N. Nguyen, A.T. Hoang, X.D. Pham, M.T. Sai, M.Q. Chau, V.V. Pham, Effect of Sn component on properties and microstructure Cu–Ni–Sn alloys. J. Teknol. 80(6), 43–51 (2018). https://doi.org/10.11113/jt.v80.11867

    Article  Google Scholar 

  46. Y.-K. Kim, S.-H. Park, K.-A. Lee, Effect of post-heat treatment on the thermophysical and compressive mechanical properties of Cu–Ni–Sn alloy manufactured by selective laser melting. Mater. Charact. 162, 110194 (2020). https://doi.org/10.1016/j.matchar.2020.110194

    Article  CAS  Google Scholar 

  47. P. Virtanen, T. Tianen, Effect of nickel content on the decomposition behaviour and properties of CuNiSn alloys. Phys. Status Solidi (A) 159(2), 305–316 (1997). https://doi.org/10.1002/1521-396X(199702)

    Article  CAS  Google Scholar 

  48. Z. Guo, J. Jie, J. Liu, S. Yue, S. Liu, T. Li, Effect of cold rolling on aging precipitation behavior and mechanical properties of Cu–15Ni–8Sn alloy. J. Alloys Compd. 848, 156275 (2020). https://doi.org/10.1016/j.jallcom.2020.156275

    Article  CAS  Google Scholar 

  49. D.H. Yang, Y.K. Kim, S.H. Park, K.A. Lee, Improved mechanical and thermophysical properties of additively manufactured Cu–Ni–Sn–P alloy by using aging treatment. J. Alloys Compd. 875, 160050 (2021). https://doi.org/10.1016/j.jallcom.2021.160050

    Article  CAS  Google Scholar 

  50. Z.M. Li, Z.L. Cheng, X.N. Li, Y.L. Hu, N.J. Li, Y.H. Zheng, Y.Y. Shao, R.W. Liu, C. Dong, Enthalpic interaction promotes the stability of high elastic Cu–Ni–Sn alloys. J. Alloys Compd. 896, 163068 (2022). https://doi.org/10.1016/j.jallcom.2021.163068

    Article  CAS  Google Scholar 

  51. J. Zhang, Z. Guo, J. Jie, J. Cheng, D. Zhang, Evolution behavior of γ-D03 phase in Cu–15Ni–8Sn alloy and the corresponding effects on alloy property. J. Alloys Compd. (2022). https://doi.org/10.1016/j.jallcom.2021.162736

    Article  Google Scholar 

  52. S. Ilangovan, R. Vaira Vignesh, R. Padmanaban, J. Gokulachandran, Effect of composition and aging time on hardness and wear behavior of Cu–Ni–Sn spinodal alloy. J. Centr. South Univ. 26(10), 2634–2642 (2019). https://doi.org/10.1007/s11771-019-4200-x

    Article  CAS  Google Scholar 

  53. T.C. Lee, S. Shekhar, A. Vilassakdanont et al., Mechanical behavior of Cu–10Ni–6Sn spinodal alloy. MRS Online Proc. Libr. 21, 577–582 (1983). https://doi.org/10.1557/PROC-21-577

    Article  Google Scholar 

  54. S. Ilangovan, R. Sellamuthu, An investigation of the effect of Ni content and hardness on the wear behaviour of sand cast Cu–Ni–Sn alloys. Int. J. Microstruct. Mater. Prop. 7(4), 316–328 (2012)

    CAS  Google Scholar 

  55. S.Z. Zhang, B.H. Jiang, W.J. Ding, Dry sliding wear of Cu-15Ni-8Sn alloy. Tribol. Int. 43(1–2), 64–68 (2010)

    Article  Google Scholar 

  56. S.Z. Zhang, B.H. Jiang, W.J. Ding, Wear of Cu–15Ni–8Sn spinodal alloy. Wear 264(3–4), 199–203 (2008)

    Article  CAS  Google Scholar 

  57. W.R. Cribb, F.C. Grensing, Spinodal copper alloy C72900—new high strength antifriction alloy system. Can. Metall. Q. 50(3), 232–239 (2011). https://doi.org/10.1179/1879139511Y.0000000012

    Article  CAS  Google Scholar 

  58. L.E. Collins, J.R. Barry, Reduced segregation in rapidly solidified Cu–Ni–Sn alloys. Mater. Sci. Eng. 98, 335–338 (1988). https://doi.org/10.1016/0025-5416(88)90181-4

    Article  CAS  Google Scholar 

  59. D.R. Manca, A.Y. Churyumov, A.V. Pozdniakov et al., Microstructure and properties of novel heat resistant Al–Ce–Cu alloy for additive manufacturing. Met. Mater. Int. 25, 633–640 (2019). https://doi.org/10.1007/s12540-018-00211-0

    Article  CAS  Google Scholar 

  60. E. Çadırlı, Effect of solidification parameters on mechanical properties of directionally solidified Al-Rich Al–Cu alloys. Met. Mater. Int. 19, 411–422 (2013). https://doi.org/10.1007/s12540-013-3006-x

    Article  CAS  Google Scholar 

  61. A.S. Barros, I.A. Magno, F.A. Souza et al., Measurements of microhardness during transient horizontal directional solidification of Al-Rich Al–Cu alloys: effect of thermal parameters, primary dendrite arm spacing and Al2Cu intermetallic phase. Met. Mater. Int. 21, 429–439 (2015). https://doi.org/10.1007/s12540-015-4499-2

    Article  CAS  Google Scholar 

  62. X. Peng, Y. Li, G. Xu et al., Effect of precipitate state on mechanical properties, corrosion behavior, and microstructures of Al–Zn–Mg–Cu alloy. Met. Mater. Int. 24, 1046–1057 (2018). https://doi.org/10.1007/s12540-018-0057-z

    Article  CAS  Google Scholar 

  63. M.V. Canté, J.E. Spinelli, N. Cheung et al., The correlation between dendritic microstructure and mechanical properties of directionally solidified hypoeutectic Al–Ni alloys. Met. Mater. Int. 16, 39–49 (2010). https://doi.org/10.1007/s12540-010-0039-2

    Article  CAS  Google Scholar 

  64. Z. Guo, J. Jie, S. Liu, J. Liu, S. Yue, Y. Zhang, T. Li, Suppression of discontinuous precipitation in age-hardening Cu–15Ni–8Sn alloy by addition of V. J. Alloys Compd. 813, 152229 (2020). https://doi.org/10.1016/j.jallcom.2019.152229

    Article  CAS  Google Scholar 

  65. Z. Guo, W. Sha, Quantification of precipitation hardening and evolution of precipitates. Mater. Trans. 43(6), 1273–1282 (2002). https://doi.org/10.2320/matertrans.43.1273

    Article  CAS  Google Scholar 

  66. S. Ilangovan, Study of microstructure, hardness and wear properties of sand cast Cu–4Ni–6Sn bronze alloy. J. Eng. Sci. Technol. 10(4), 526–532 (2015)

    Google Scholar 

  67. S. Ilangovan, R. Sellamuthu, Effects of tin on hardness, wear rate and coefficient of friction of cast Cu–Ni–Sn alloys. J. Eng. Sci. Technol. 8(1), 34–43 (2013)

    Google Scholar 

  68. L.T. Chieu, S.M. Thang, N.D. Nam, P.M. Khanh, The effect of deformation on microstructure of Cu–Ni–Sn aging alloys. Key Eng. Mater. 682, 113–118 (2016). https://doi.org/10.4028/www.scientific.net/KEM.682.113

    Article  Google Scholar 

  69. P. Virtanen, T. Tiainen, T. Lepistö, Precipitation at faceting grain boundaries of Cu–Ni–Sn alloys. Mater. Sci. Eng. A 251(1–2), 269–275 (1998). https://doi.org/10.1016/s0921-5093(98)00498-5

    Article  Google Scholar 

  70. J.C. Rhu, S.S. Kim, Y.C. Jung, S.Z. Han, C.J. Kim, Tensile strength of thermomechanically processed Cu–9Ni–6Sn alloys. Metall. Mater. Trans. A 30(10), 2649–2657 (1999). https://doi.org/10.1007/s11661-999-0305-4

    Article  Google Scholar 

  71. B.G. Lefevre, A.T. D’annessa, D. Kalish, Age hardening in Cu–15Ni–8Sn alloy. Metall. Trans. A 9(4), 577–586 (1978). https://doi.org/10.1007/bf02646415

    Article  Google Scholar 

  72. P. Kratochvíl, J. Mencl, J. Pešička, S.N. Komnik, The structure and low temperature strength of the age hardened Cu–Ni–Sn alloys. Acta Metall. 32(9), 1493–1497 (1984). https://doi.org/10.1016/0001-6160(84)90095-6

    Article  Google Scholar 

  73. R.Q. Liu, S.L. Yang, L. Chen, W.B. Xie, Y.S. Yu, H.R. Wang, Y.S. Deng, Microstructure of casting and solid solution of Cu–7.5Ni–5.0Sn alloy. Adv. Mater. Res. 581–582, 436–439 (2012). https://doi.org/10.4028/www.scientific.net/amr.581-582.436

    Article  Google Scholar 

  74. M.J. Diánez, E. Donoso, M.J. Sayaués, N.A. Perejó, P.E. Sánchez-Jimánez, A.L.A. Pérez-Maqued, J.M. Criado, The calorimetric analysis as a tool for studying the aging hardening mechanism of a Cu–10wt%Ni–5.5wt%Sn alloy. J. Alloys Compd. 688, 288–294 (2016). https://doi.org/10.1016/j.jallcom.2016.07.021

    Article  CAS  Google Scholar 

  75. G.R. Ebrahimi, A. Momeni, S.M. Abbasi, H. Monajatizadeh, Constitutive analysis and processing map for hot working of a Ni–Cu alloy. Met. Mater. Int. 19(1), 11–17 (2013). https://doi.org/10.1007/s12540-013-1003-8

    Article  CAS  Google Scholar 

  76. Z. Deng, The effect of cold deformation on the kinetics of the spinodal decomposition of Cu–9Ni–6Sn–0.3Ce alloy. Trans. Nonferrous Met. Soc. China 2(1), 93–97 (1992)

    CAS  Google Scholar 

  77. J.T. Plewes, High-strength Cu–Ni–Sn alloys by thermomechanical processing. Metall. Trans. A 6(3), 537–544 (1975). https://doi.org/10.1007/BF02658411

    Article  Google Scholar 

  78. S. Spooner, B.G. Lefevre, The effect of prior deformation on spinodal age hardening in Cu–15ni–8Sn alloy. Metall. Trans. A 11(7), 1085–1093 (1980). https://doi.org/10.1007/BF02668132

    Article  Google Scholar 

  79. S.S. Anargh, A. Sunil, M.P. Yadukrishnan, K. Arun Raj, K.A. Anirudh, K.V. Shankar, Study of stress corrosion cracking resistance of copper based spinodal alloys-part 1. Mater. Today: Proc. 24, 2185–2192 (2019). https://doi.org/10.1016/j.matpr.2020.03.676

    Article  CAS  Google Scholar 

  80. C. Dong, J.B. Qiang, Y.M. Wang, N. Jiang, J. Wu, P. Thiel, Cluster-based composition rule for stable ternary quasicrystals in Al-(Cu, Pd, Ni)-TM systems. Philos. Mag. 86(3–5), 263–274 (2006). https://doi.org/10.1080/14786430500281308

    Article  CAS  Google Scholar 

  81. C. Dong, Q. Wang, J.B. Qiang, Y.M. Wang, N. Jiang, G. Han, Y.H. Li, J. Wu, J.H. Xia, From clusters to phase diagrams: composition rules of quasicrystals and bulk metallic glasses. J. Phys. D Appl. Phys. 40, R273–R291 (2007). https://doi.org/10.1088/0022-3727/40/15/R01

    Article  CAS  Google Scholar 

  82. C. Pang, B. Jiang, Y. Shi, Q. Wang, C. Dong, Cluster-plus-glue-atom model and universal composition formulas [cluster](glue atom)x for BCC solid solution alloys. J. Alloys Compd. 652, 63–69 (2015). https://doi.org/10.1016/j.jallcom.2015.08.209

    Article  CAS  Google Scholar 

  83. H. Hong, Q. Wang, C. Dong et al., Understanding the Cu–Zn brass alloys using a short-range-order cluster model: significance of specific compositions of industrial alloys. Sci. Rep. 4, 7065 (2014). https://doi.org/10.1038/srep07065

    Article  CAS  Google Scholar 

  84. N.J. Li, X.N. Li, Z.M. Li, Q.X. Yu, Y.H. Zheng, Y.L. Hu, Q. Wang, C. Dong, Y.X. Jiang, X.W. Zhang, Differential effects of Zn and Co solutes on the properties of Cu–Ni–Sn alloys. Intermetallics (2020). https://doi.org/10.1016/j.intermet.2020.106894

    Article  Google Scholar 

  85. A. Popovich, V. Sufiiarov, I. Polozov, E. Borisov, D. Masaylo, A. Orlov, Microstructure and mechanical properties of additive manufactured copper alloy. Mater. Lett. 179, 38–41 (2016). https://doi.org/10.1016/j.matlet.2016.05.064

    Article  CAS  Google Scholar 

  86. C. Guo, J. Chen, X. Xiao, H. Huang, W. Wang, B. Yang, The effect of Co addition on the modulated structure coarsening and discontinuous precipitation growth kinetics of Cu–15Ni–8Sn alloy. J. Alloys Compd. (2020). https://doi.org/10.1016/j.jallcom.2020.155275

    Article  Google Scholar 

  87. S.Z. Han, J.H. Ahn, Y.S. You et al., Discontinuous precipitation at the deformation band in copper alloy. Met. Mater. Int. 24, 23–27 (2018). https://doi.org/10.1007/s12540-017-6626-8

    Article  CAS  Google Scholar 

  88. S. Xu, Y. Li, M. Zhang, T. Song, H. Ding, The effects of Nb additions on the microstructure evolution in Cu–9Ni–6Sn alloy. Intermetallics (2022). https://doi.org/10.1016/j.intermet.2022.107497

    Article  Google Scholar 

  89. S.Y. Xu, Y.L. Li, M.X. Zhang, Y.F. Jiang, H. Ding, Effect of heat treatment conditions on microstructures and mechanical properties of Cu–9Ni–6Sn–0.22Nb alloy. Key Eng Mater (2021). https://doi.org/10.4028/www.scientific.net/KEM.904.124

    Article  Google Scholar 

  90. K. Nogita, M.A.A. Mohd-Salleh, Q.T. Xuan, S. Smith, Effects of trace phosphorus in Sn–Cu–Ni wave solder dross. Mater. Sci. Forum 857, 49–52 (2016). https://doi.org/10.4028/www.scientific.net/MSF.857.49

    Article  Google Scholar 

  91. P.S. Gilman, J.S. Benjamin, Mechanical alloying. Ann. Rev. Mater. Sci. 13, 279–300 (1983)

    Article  CAS  Google Scholar 

  92. C. Zhao, Z. Wang, D. Li, D. Pan, B. Lou, Z. Luo, W. Zhang, Optimization of strength and ductility in an as-extruded Cu–15Ni–8Sn alloy by the additions of Si and Ti. J. Alloys Compd. 823, 153759 (2020). https://doi.org/10.1016/j.jallcom.2020.153759

    Article  CAS  Google Scholar 

  93. L. Deyong, R. Tremblay, R. Angers, Microstructural and mechanical properties of rapidly solidified Cu–Ni–Sn alloys. Mater. Sci. Eng. A 124, 223 (1990)

    Article  Google Scholar 

  94. L. Deyong, M. Elboujdaïni, R. Tremblay et al., Electrochemical behaviour of rapidly solidified and conventionally cast Cu–Ni–Sn alloys. J. Appl. Electrochem. 20, 756–762 (1990). https://doi.org/10.1007/BF01094302

    Article  CAS  Google Scholar 

  95. C. Zhao, Z. Wang, D. Li, L. Kollo, Z. Luo, W. Zhang, K.G. Prashanth, Cu–Ni–Sn alloy fabricated by melt spinning and selective laser melting: a comparative study on the microstructure and formation kinetics. J. Mater. Res. Technol. 9(6), 13097–13105 (2020). https://doi.org/10.1016/j.jmrt.2020.09.047

    Article  CAS  Google Scholar 

  96. W.A. Monteiro, J.A.G. Carrió, T.J. Masson, C.D. Abreu, I.M. Marques, L.C.E. da Silva, Microstructure and microanalysis studies of copper–nickel–tin alloys obtained by conventional powder metallurgy processing. Mater. Sci. Forum 660–661, 29–34 (2010). https://doi.org/10.4028/www.scientific.net/MSF.660-661.29

    Article  CAS  Google Scholar 

  97. J.H. Reinshagen, N. Huntingdon, Powder metallurgical process for manufacturing coppernickel-tin spinodal alloy articles, United States Patent, Patent Number: 4,681,629 (1987)

  98. N. Jordan, R. Schroder, H. Harig, R. Kienzler, Influences of the spray deposition process on the properties of copper and copper alloys. Mater. Sci. Eng. A 326, 51–62 (2002). https://doi.org/10.1016/S0921-5093(01)01425-3

    Article  Google Scholar 

  99. D. Yang, F. Wang, M. Xie, Y. Zhang, H. Cui, M. Liu, et al, Study on structure and properties of Cu–7.5Ni–2.5Sn alloys prepared by spray deposition. Fenmo Yejin Jishu/Powder Metall. Technol. 27, 5–6 (2009).

  100. P. Hermann, D.G. Morris, Relationship between microstructure and mechanical properties of a spinodally decomposing Cu–15Ni–8Sn alloy prepared by spray deposition. Metall. Mater. Trans. A 25, 1403–1412 (1994). https://doi.org/10.1007/BF02665473

    Article  Google Scholar 

  101. O.J. Kwon, Y.C. Kim, K.B. Kim, Y.K. Lee, E. Fleury, Formation of amorphous phase in the binary Cu–Zr alloy system. Met. Mater. Int. 12(3), 207–212 (2006). https://doi.org/10.1007/BF03027532

    Article  CAS  Google Scholar 

  102. Y. Ouyang, X. Gan, S. Zhang, Z. Li, K. Zhou, Y. Jiang, X. Zhang, Age-hardening behavior and microstructure of Cu–15Ni–8Sn–0.3Nb alloy prepared by powder metallurgy and hot extrusion. Trans. Nonferrous Met. Soc. China 27(9), 1947–1955 (2017). https://doi.org/10.1016/S1003-6326(17)60219-X

    Article  CAS  Google Scholar 

  103. Z. Guo et al., Microstructure evolution of Cu–15Ni–8Sn alloy prepared by vertical semi-continuous casting with EMS. IOP Conf. Ser. Mater. Sci. Eng. 424, 012073 (2018). https://doi.org/10.1088/1757-899X/424/1/012073

    Article  Google Scholar 

  104. G.M. Karthik, H.S. Kim, Heterogeneous aspects of additive manufactured metallic parts: a review. Met. Mater. Int. 27, 1–39 (2021). https://doi.org/10.1007/s12540-020-00931-2

    Article  CAS  Google Scholar 

  105. E. Lee, S. Han, K. Euh et al., Effect of Ti addition on tensile properties of Cu–Ni–Si alloys. Met. Mater. Int. 17, 569 (2011). https://doi.org/10.1007/s12540-011-0807-7

    Article  CAS  Google Scholar 

  106. F. Arias-González, J. del Val, R. Comesaña et al., Microstructure and crystallographic texture of pure titanium parts generated by laser additive manufacturing. Met. Mater. Int. 24, 231–239 (2018). https://doi.org/10.1007/s12540-017-7094-x

    Article  CAS  Google Scholar 

  107. A.V. Rodrigues, T.S. Lima, T.A. Vida et al., Microstructure and tensile/corrosion properties relationships of directionally solidified Al–Cu–Ni alloys. Met. Mater. Int. 24, 1058–1076 (2018). https://doi.org/10.1007/s12540-018-0116-5

    Article  CAS  Google Scholar 

  108. J. Wang, X.L. Zhou, J. Li, M. Brochu, Y.F. Zhao, Microstructures and properties of SLM-manufactured Cu–15Ni–8Sn alloy. Addit. Manuf. (2020). https://doi.org/10.1016/j.addma.2019.100921

    Article  Google Scholar 

  109. G. Zhang, S. Liu, C. Chen, X. Zhang, X. Gan, Q. Lei, Z. Li, K. Zhou, Effect of heat treatment on microstructure and mechanical properties of a selective laser melted Cu–15Ni–8Sn alloy. Mater. Sci. Eng. A (2019). https://doi.org/10.1016/j.msea.2019.138132

    Article  Google Scholar 

  110. C. Zhao, Z. Wang, D. Li, L. Kollo, Z. Luo, W. Zhang, K.G. Prashanth, Selective laser melting of Cu–Ni–Sn: a comprehensive study on the microstructure, mechanical properties, and deformation behavior. Int. J. Plast. 138, 102926 (2021)

    Article  CAS  Google Scholar 

  111. D.H. Yang, Y.K. Kim, S.H. Park, K.A. Lee, Improved mechanical and thermophysical properties of additively manufactured Cu–Ni–Sn–P alloy by using aging treatment. J. Alloys Compd. (2021). https://doi.org/10.1016/j.jallcom.2021.160050

    Article  Google Scholar 

  112. G. Zhang, C. Chen, X. Wang, P. Wang, X. Zhang, X. Gan, K. Zhou, Additive manufacturing of fine-structured copper alloy by selective laser melting of pre-alloyed Cu–15Ni–8Sn powder. Int. J. Adv. Manuf. Technol. 96(9–12), 4223–4230 (2018). https://doi.org/10.1007/s00170-018-1891-3

    Article  Google Scholar 

  113. A. Popovich, V. Sufiiarov, I. Polozov, E. Borisov, D. Masaylo, A. Orlov, Microstructure and mechanical properties of additive manufactured copper alloy. Mater. Lett. (2016). https://doi.org/10.1016/j.matlet.2016.05.064

    Article  Google Scholar 

  114. D. Tiberto, U.E. Klotz, F. Held, G. Wolf, Additive manufacturing of copper alloys: influence of process parameters and alloying elements. Mater. Sci. Technol. (2019). https://doi.org/10.1080/02670836.2019.1600840

    Article  Google Scholar 

  115. Q. Jiang, P. Zhang, Z. Yu, H. Shi, D. Wu, H. Yan, X. Ye, Q. Lu, Y. Tian, A review on additive manufacturing of pure copper. Coatings 11, 740 (2021). https://doi.org/10.3390/coatings11060740

    Article  CAS  Google Scholar 

  116. Z. Liang, W. Fan, P. Wang, Y. Wang, K. Zhang, J. Zhao, L. Peng, Revealing the effect of phase composition and transformation on the mechanical properties of a Cu–6Ni–6Sn–0.6Si alloy. Materials (2021). https://doi.org/10.3390/ma14185201

    Article  Google Scholar 

  117. S. Kondo, A. Masusaki, K. Ogawa, T. Morimur, H. Nakashima, Effects of initial states on the spinodal decomposition of quenched and melt-spun Cu–15Ni–8Sn alloy. Mater. Trans. 56(1), 23–29 (2014). https://doi.org/10.2320/matertrans.M2014234

    Article  CAS  Google Scholar 

  118. K.V. Shankar, R. Sellamuthu, A study on the effect of tin addition on wear and mechanical properties of spinodal alloys cast in metal mould. Int. J. Microstruct. Mater. Prop. 10(5–6), 381–401 (2015). https://doi.org/10.1504/IJMMP.2015.074994

    Article  CAS  Google Scholar 

  119. J. Du, C. Dong, R. Melnik et al., Hidden electronic rule in the “cluster-plus-glue-atom” model. Sci. Rep. 6, 33672 (2016). https://doi.org/10.1038/srep33672

    Article  CAS  Google Scholar 

  120. Z. Sun, X. Tan, C. Wang, M. Descoins, D. Mangelinck, S.B. Tor, E.A. Jägle, S. Zaefferer, D. Raabe, Reducing hot tearing by grain boundary segregation engineering in additive manufacturing: example of an AlxCoCrFeNi high-entropy alloy. Acta Mater. (2021). https://doi.org/10.1016/j.actamat.2020.116505

    Article  Google Scholar 

  121. D. Karlsson, A. Marshal, F. Johansson, M. Schuisky, M. Sahlberg, J.M. Schneider, U. Jansson, Elemental segregation in an AlCoCrFeNi high-entropy alloy—a comparison between selective laser melting and induction melting. J. Alloys Compd. 784, 195–203 (2019). https://doi.org/10.1016/j.jallcom.2018.12.267

    Article  CAS  Google Scholar 

  122. M. Sabelle, M. Walczak, J. Ramos-Grez, Scanning pattern angle effect on the resulting properties of selective laser sintered monolayers of Cu–Sn–Ni powder. Opt. Lasers Eng. 100, 1–8 (2018). https://doi.org/10.1016/j.optlaseng.2017.06.028

    Article  Google Scholar 

  123. D. Dai, D. Gu, Thermal behavior and densification mechanism during selective laser melting of copper matrix composites: simulation and experiments. Mater. Des. 55, 482–491 (2014). https://doi.org/10.1016/j.matdes.2013.10.006

    Article  CAS  Google Scholar 

  124. L. Bertini, F. Bucchi, F. Frendo, R. Valentini, Microstructure and fatigue behavior of a Ni–Cu–Sn alloy. Metals. 8(11), 888 (2018). https://doi.org/10.3390/met8110888

    Article  CAS  Google Scholar 

  125. E.G. Baburaj, U.D. Kulkarni, E.S.K. Menon, R. Krishnan, Initial stages of decomposition in Cu–9Ni–6Sn. J. Appl. Crystallogr. 12(5), 476–480 (1979)

    Article  CAS  Google Scholar 

  126. Z. Zheng, P. Guo, J. Li, T. Yang, Z. Song, C. Xu, M. Zhou, Effect of cold rolling on microstructure and mechanical properties of a Cu–Zn–Sn–Ni–Co–Si alloy for interconnecting devices. J. Alloys Compd. 831, 154842 (2020). https://doi.org/10.1016/j.jallcom.2020.154842

    Article  CAS  Google Scholar 

  127. J. Li, G. Huang, X. Mi, L. Peng, H. Xie, Y. Kang, Microstructure evolution and properties of a quaternary Cu–Ni–Co–Si alloy with high strength and conductivity. Mater. Sci. Eng. A 766, 138390 (2019)

    Article  CAS  Google Scholar 

  128. J. Li, G. Huang, X. Mi, L. Peng, H. Xie, Y. Kang, Effect of Ni/Si mass ratio and thermomechanical treatment on the microstructure and properties of Cu–Ni–Si alloys. Materials. 12(13), 2076 (2019). https://doi.org/10.3390/ma12132076

    Article  CAS  Google Scholar 

  129. C. Crozet, M. Verdier, S. Lay et al., Effect of cooling rates on γ → α transformation and metastable states in Fe–Cu alloys with addition of Ni. Met. Mater. Int. 24, 681–692 (2018). https://doi.org/10.1007/s12540-018-0080-0

    Article  CAS  Google Scholar 

  130. S.P. Singh, Spinodal theory: a common rupturing mechanism in spinodal dewetting and surface directed phase separation (Some technological aspects: spatial correlations and the significance of dipole-quadrupole interaction in spinodal dewetting). Adv. Condens. Matter Phys. 2011 526397 (2011). https://doi.org/10.1155/2011/526397

  131. L.A. Bendersky, F.S. Biancaniello, M.E. Williams, Evolution of the two-phase microstructure L12 + DO22 in near-eutectoid Ni3(Al, V) alloy. J. Mater. Res. 9, 3068–3082 (1994). https://doi.org/10.1557/JMR.1994.3068

    Article  CAS  Google Scholar 

  132. W. Huiqiang, F. Jicai, H. Jingshan, Microstructure evolution and fracture behaviour for electron beam welding of Ti–6Al–4V. Bull. Mater. Sci. 27, 387–392 (2004). https://doi.org/10.1007/BF02704777

    Article  Google Scholar 

  133. C.S. Han, C.H. Bae, J.H. Lee, Characteristic of microstructure and mechanical properties in Ni–Al–Ti alloy system. Met. Mater. Int. 15, 891–895 (2009). https://doi.org/10.1007/s12540-009-0891-0

    Article  CAS  Google Scholar 

  134. M. Zafar, H. Zhao, 4D printing: future insight in additive manufacturing. Met. Mater. Int. 26, 564–585 (2020). https://doi.org/10.1007/s12540-019-00441-w

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karthik V. Shankar.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sankar, B., Vinay, C., Vishnu, J. et al. Focused Review on Cu–Ni–Sn Spinodal Alloys: From Casting to Additive Manufacturing. Met. Mater. Int. 29, 1203–1228 (2023). https://doi.org/10.1007/s12540-022-01305-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-022-01305-6

Keywords

Navigation