Abstract
The present review article evaluates the research and progress status of Cu–Ni–Sn-based spinodal alloys focussed on the methods and technologies implemented to enhance the properties of cast Cu–Ni–Sn alloys in industrial applications, particularly in components such as bearings, bushings, propellers, and impellers that find extensive demand in the marine and automotive industry. The review introduces the limitations of employing copper-beryllium alloys in the industry and discusses how Cu–Ni–Sn alloys represent a potential alternative. Subsequently, a comprehensive overview of spinodal decomposition is provided, considering the thermodynamic aspects and the Cu–Ni–Sn ternary phase diagram. The processing of Cu–Ni–Sn alloys via traditional casting is explored with an overview of various casting techniques and ensuing microstructure-property relationships. The two significant limitations, segregation during solidification and discontinuous precipitation, are highlighted. Strategies to overcome these limitations, such as precipitation hardening, spinodal decomposition, thermo-mechanical processing, and composition design (with the effect of varying elemental additions), are further elaborated. The review summarises novel processing routes encompassing mechanical alloying, rapid solidification, powder metallurgy, and spray deposition for developing spinodal Cu–Ni–Sn alloys. Finally, the progress in fabricating Cu–Ni–Sn spinodal alloys using additive manufacturing techniques such as selective laser melting is highlighted. There are published review papers on the wrought processing of Cu–Ni–Sn alloys, so this area has not been covered here. Overall, this review article is intended to streamline an overview of the characteristics and gradual developments from cast Cu–Ni–Sn spinodal alloys to additive manufacturing-based Cu–Ni–Sn spinodal alloys.
Graphic Abstract

This is a preview of subscription content, access via your institution.








References
A.T. Hoang, L.H. Nguyen, D.N. Nguyen, A study of mechanical properties and conductivity capability of Cu–9Ni–3Sn alloy. Int. J. Appl. Eng. Res. 13(7), 5120–5126 (2018)
L.H. Schwartz, S. Mahajan, J.T. Plewes, Spinodal decomposition in a Cu-9 wt% Ni-6 wt% Sn alloy. Acta Metall. 22(5), 601–609 (1974). https://doi.org/10.1016/0001-6160(74)90157-6
W. Raymond Cribb, M.J. Gedeon, F.C. Grensing, Performance advances in copper-nickel-tin spinodal alloys. Adv. Mater. Process. 171(9), 20–25 (2013)
C.R. Schuler, M.S. Kent, D.C. Deubner, M.T. Berakis, M. McCawley, P.K. Henneberger, M.D. Rossman, K. Kreiss, Process-related risk of beryllium sensitization and disease in a copper-beryllium alloy facility. Am. J. Ind. Med. 47(3), 195–205 (2005). https://doi.org/10.1002/ajim.20140
K.V. Shankar, R. Sellamuthu, Determination on the effect of tin content on microstructure, hardness, optimum aging temperature and aging time for spinodal bronze alloys cast in metal mold. Int. J. Metalcast. 11(2), 189–194 (2017). https://doi.org/10.1007/s40962-016-0034-6
C.R. Scorey, S. Chin, M.J. White, R.J. Livak, Spinodal Cu–Ni–Sn alloys for electronic applications. JOM J. Miner. Met. Mater. Soc. 36(11), 52–54 (1984). https://doi.org/10.1007/BF03338616
F. Findik, Modulated (Spinodal) Alloys. Period. Eng. Nat. Sci.: PEN (2013). https://doi.org/10.21533/pen.v1i1.16
S. Du, X. Wang, Z. Li, Z. Yang, J. Wang, Effect of Ni content on microstructure and characterization of Cu–Ni–Sn alloys. Materials (2018). https://doi.org/10.3390/ma11071108
F. Findik, Discontinuous (cellular) precipitation. J. Mater. Sci. Lett. 17, 79–83 (1998). https://doi.org/10.1023/A:1006510228181
F. Findik, H.M. Flower, Morphological changes and hardness evolution in Cu–30Ni–5Cr and Cu–45Ni–15Cr spinodal alloys. Mater. Sci. Technol. 9(5), 408–416 (1993). https://doi.org/10.1179/mst.1993.9.5.408
F. Findik, H.M. Flower, Microstructure and hardness development in Cu–30Ni–2·5Cr and Cu–45Ni–10Cr spinodal alloys. Mater. Sci. Technol. 8(3), 197–205 (1992). https://doi.org/10.1179/mst.1992.8.3.197
F. Findik, Observations on particle size/spacing relationships and phase equilibria in the Cu–Ni–Cr system. J. Mater. Sci. 28, 5056–5059 (1993). https://doi.org/10.1007/BF00361178
M. Karthik, J. Abhinav, K.V. Shankar, Morphological and mechanical behaviour of Cu–Sn alloys—a review. Met. Mater. Int. 27(7), 1915–1946 (2021). https://doi.org/10.1007/s12540-020-00899-z
J.W. Gibbs, Collected Works (Yale University Press, New Haven, 1948), pp. 105–115 and pp. 252–258
E.P. Favvas, A.C. Mitropoulos, What is spinodal decomposition? J. Eng. Sci. Technol. Rev. 1(1), 25–27 (2008). https://doi.org/10.25103/jestr.011.05
J.W. Cahn, J.E. Hilliard, Free energy of a nonuniform system. I. Interfacial free energy. J. Chem. Phys. 28(2), 258–267 (1958). https://doi.org/10.1063/1.1744102
K.V. Shankar, Development of High Strength Copper Based Spinodal Alloy Cast in Metal Mould. PhD thesis. Amrita Vishwa Vidyapeetham (2017)
V. Vuorinen, H. Yu, T. Laurila et al., Formation of intermetallic compounds between liquid Sn and various CuNix metallizations. J. Electron. Mater. 37, 792–805 (2008). https://doi.org/10.1007/s11664-008-0411-x
C.M. Gourlay, K. Nogita, J. Read et al., Intermetallic formation and fluidity in Sn-rich Sn–Cu–Ni alloys. J. Electron. Mater. 39, 56–69 (2010). https://doi.org/10.1007/s11664-009-0962-5
H.M. Henao, C. Chu, J.P. Solis, K. Nogita, Experimental determination of the Sn–Cu–Ni phase diagram for pb-free solder applications. Metall. Mater. Trans. B Process Metall. Mater. Process. Sci. 50(1), 502–516 (2019). https://doi.org/10.1007/s11663-018-1456-8
J.-C. Zhao, M. Notis, Spinodal decomposition, ordering transformation, and discontinuous precipitation in a Cu–15Ni–8Sn alloy. Acta Mater. 46(12), 4203–4218 (1998). https://doi.org/10.1016/s1359-6454(98)00095-0
F. Findik, Improvements in spinodal alloys from past to present. Mater. Des. 42, 131–146 (2012). https://doi.org/10.1016/j.matdes.2012.05.039
D.J. Seol, S.Y. Hu, Y.L. Li et al., Three-dimensional phase-field modeling of spinodal decomposition in constrained films. Met. Mater. Int. 9, 61–66 (2003). https://doi.org/10.1007/BF03027232
M.U. Kim, J.P. Ahn, H.K. Seok et al., Application of spinodal decomposition to produce metallic glass matrix composite with simultaneous improvement of strength and plasticity. Met. Mater. Int. 15, 193–196 (2009). https://doi.org/10.1007/s12540-009-0193-6
Y. Jiang, Z. Li, Z. Xiao, Y. Xing, Y. Zhang, M. Fang, Microstructure and properties of a Cu–Ni–Sn alloy treated by two-stage thermomechanical processing. JOM 71(8), 2734–2741 (2019). https://doi.org/10.1007/s11837-019-03606-5
F. Sadi, C. Servant, Phase transformations and phase diagram at equilibrium in the Cu–Ni–Sn system. J. Therm. Anal. Calorim. 90(2), 319–323 (2007). https://doi.org/10.1007/s10973-007-8347-6
U. Prakash, R.A. Buckley, H. Jones et al., DO22 to L12 transition in intermetallic systems. J. Mater. Sci. 27, 2001–2004 (1992). https://doi.org/10.1007/BF01117910
S. Ilangovan, J. Sreejith, M. Manideep, S. Harish, An experimental investigation of Cu–Ni–Sn alloy on microstructure, hardness and wear parameters optimization using DOE. Tribol. Ind. 40(1), 156–163 (2018). https://doi.org/10.24874/ti.2018.40.01.15
K.V. Shankar, R. Sellamuthu, Determination of optimum aging temperature and time, mechanical and wear properties for Cu–9Ni–6Sn spinodal bronze alloy cast using permanent mould. Int. J. Mater. Eng. Innov. 8(1), 27–38 (2017). https://doi.org/10.1504/IJMATEI.2017.085809
B. Alili, D. Bradai, P. Zieba, On the discontinuous precipitation reaction and solute redistribution in a Cu–15%Ni–8%Sn alloy. Mater. Charact. 59(10), 1526–1530 (2008). https://doi.org/10.1016/j.matchar.2008.01.007
D. Tang, L. Wang, J. Li et al., Microstructure, element distribution, and mechanical property of Cu9Ni6Sn alloys by conventional casting and twin-roll casting. Metall. Mater. Trans. A 51, 1469–1474 (2020). https://doi.org/10.1007/s11661-020-05668-6
R. Tewari, N.K. Sarkar, D. Harish, B. Vishwanadh, G.K. Dey, S. Banerjee, Intermetallics and alloys for high temperature applications, in Materials Under Extreme Conditions. ed. by A.K. Tyagi, S. Banerjee (Elsevier, Amsterdam, 2017), pp.293–335. https://doi.org/10.1016/B978-0-12-801300-7.00009-7
C. Guo, Y. Shi, J. Chen, X. Xiao, B. Liu, J. Liu, B. Yang, Effects of P addition on spinodal decomposition and discontinuous precipitation in Cu–15Ni–8Sn alloy. Mater. Charact. 171, 110760 (2020). https://doi.org/10.1016/j.matchar.2020.110760
J.K. Kim, P.K. Rohatgi, J.O. Choi et al., Wear properties and effect of molds on microstructure of graphite reinforced copper alloy composites made by centrifugal casting. Met. Mater. Int. 11, 333–340 (2005). https://doi.org/10.1007/BF03027338
E. Lee, K. Euh, S.Z. Han et al., Tensile and electrical properties of direct aged Cu–Ni–Si–x%Ti alloys. Met. Mater. Int. 19, 183–188 (2013). https://doi.org/10.1007/s12540-013-2007-0
S. Kobayashi, S. Tsurekawa, T. Watanabe, A new approach to grain boundary engineering for nanocrystalline materials. Beilstein J. Nanotechnol. 7(1), 1829–1849 (2016). https://doi.org/10.3762/BJNANO.7.176
A. Das, V. Verma, C.B. Basak, Elucidating microstructure of spinodal copper alloy through annealing. Mater. Charact. 120, 152–158 (2016). https://doi.org/10.1016/j.matchar.2016.08.021
Y. Geng, Y. Ban, B. Wang, X. Li, K. Song, Y. Zhang, Y. Jia, B. Tian, Y. Liu, A.A. Volinsky, A review of microstructure and texture evolution with nanoscale precipitates for copper alloys. J. Mater. Res. Technol. 9(5), 11918–11934 (2020). https://doi.org/10.1016/j.jmrt.2020.08.055
B. Luo, D. Li, C. Zhao, Z. Wang, Z. Luo, W. Zhang, A low Sn content Cu–Ni–Sn alloy with high strength and good ductility. Mater. Sci. Eng. A (2018). https://doi.org/10.1016/j.msea.2018.12.120
Z. Guo, J. Jie, S. Liu et al., Solidification characteristics and segregation behavior of Cu–15Ni–8Sn alloy. Metall. Mater. Trans. A 51, 1229–1241 (2020). https://doi.org/10.1007/s11661-019-05609-y
C. Zhao, W. Zhang, Z. Wang, D. Li, Z. Luo, C. Yang, D. Zhang, Improving the mechanical properties of Cu–15Ni–8Sn alloys by addition of titanium. Materials (2017). https://doi.org/10.3390/ma10091038
M. Yang, Y.L. Hu, X.N. Li, Z.M. Li, Y.H. Zheng, N.J. Lia, C. Dong, Compositional interpretation of high elasticity Cu–Ni–Sn alloys using cluster-plus-glue-atom model. J. Mater. Res. Technol. (2022). https://doi.org/10.1016/j.jmrt.2022.01.075
Q.X. Yu, X.N. Li, K.R. Wei, Z.M. Li, Y.H. Zheng, N.J. Li, X.T. Cheng, C.Y. Wang, Q. Wang, C. Dong, Cu–Ni–Sn–Si alloys designed by cluster-plus-glue-atom model. Mater. Des. 167, 107641 (2019). https://doi.org/10.1016/j.matdes.2019.107641
K.V. Shankar, R. Sellamuthu, An investigation on the effect of nickel content on the wear behaviour and mechanical properties of spinodal bronze alloy cast in metal mould. Int. J. Mater. Eng. Innov. 7(2), 89–103 (2016). https://doi.org/10.1504/IJMATEI.2016.079553
D.N. Nguyen, A.T. Hoang, X.D. Pham, M.T. Sai, M.Q. Chau, V.V. Pham, Effect of Sn component on properties and microstructure Cu–Ni–Sn alloys. J. Teknol. 80(6), 43–51 (2018). https://doi.org/10.11113/jt.v80.11867
Y.-K. Kim, S.-H. Park, K.-A. Lee, Effect of post-heat treatment on the thermophysical and compressive mechanical properties of Cu–Ni–Sn alloy manufactured by selective laser melting. Mater. Charact. 162, 110194 (2020). https://doi.org/10.1016/j.matchar.2020.110194
P. Virtanen, T. Tianen, Effect of nickel content on the decomposition behaviour and properties of CuNiSn alloys. Phys. Status Solidi (A) 159(2), 305–316 (1997). https://doi.org/10.1002/1521-396X(199702)
Z. Guo, J. Jie, J. Liu, S. Yue, S. Liu, T. Li, Effect of cold rolling on aging precipitation behavior and mechanical properties of Cu–15Ni–8Sn alloy. J. Alloys Compd. 848, 156275 (2020). https://doi.org/10.1016/j.jallcom.2020.156275
D.H. Yang, Y.K. Kim, S.H. Park, K.A. Lee, Improved mechanical and thermophysical properties of additively manufactured Cu–Ni–Sn–P alloy by using aging treatment. J. Alloys Compd. 875, 160050 (2021). https://doi.org/10.1016/j.jallcom.2021.160050
Z.M. Li, Z.L. Cheng, X.N. Li, Y.L. Hu, N.J. Li, Y.H. Zheng, Y.Y. Shao, R.W. Liu, C. Dong, Enthalpic interaction promotes the stability of high elastic Cu–Ni–Sn alloys. J. Alloys Compd. 896, 163068 (2022). https://doi.org/10.1016/j.jallcom.2021.163068
J. Zhang, Z. Guo, J. Jie, J. Cheng, D. Zhang, Evolution behavior of γ-D03 phase in Cu–15Ni–8Sn alloy and the corresponding effects on alloy property. J. Alloys Compd. (2022). https://doi.org/10.1016/j.jallcom.2021.162736
S. Ilangovan, R. Vaira Vignesh, R. Padmanaban, J. Gokulachandran, Effect of composition and aging time on hardness and wear behavior of Cu–Ni–Sn spinodal alloy. J. Centr. South Univ. 26(10), 2634–2642 (2019). https://doi.org/10.1007/s11771-019-4200-x
T.C. Lee, S. Shekhar, A. Vilassakdanont et al., Mechanical behavior of Cu–10Ni–6Sn spinodal alloy. MRS Online Proc. Libr. 21, 577–582 (1983). https://doi.org/10.1557/PROC-21-577
S. Ilangovan, R. Sellamuthu, An investigation of the effect of Ni content and hardness on the wear behaviour of sand cast Cu–Ni–Sn alloys. Int. J. Microstruct. Mater. Prop. 7(4), 316–328 (2012)
S.Z. Zhang, B.H. Jiang, W.J. Ding, Dry sliding wear of Cu-15Ni-8Sn alloy. Tribol. Int. 43(1–2), 64–68 (2010)
S.Z. Zhang, B.H. Jiang, W.J. Ding, Wear of Cu–15Ni–8Sn spinodal alloy. Wear 264(3–4), 199–203 (2008)
W.R. Cribb, F.C. Grensing, Spinodal copper alloy C72900—new high strength antifriction alloy system. Can. Metall. Q. 50(3), 232–239 (2011). https://doi.org/10.1179/1879139511Y.0000000012
L.E. Collins, J.R. Barry, Reduced segregation in rapidly solidified Cu–Ni–Sn alloys. Mater. Sci. Eng. 98, 335–338 (1988). https://doi.org/10.1016/0025-5416(88)90181-4
D.R. Manca, A.Y. Churyumov, A.V. Pozdniakov et al., Microstructure and properties of novel heat resistant Al–Ce–Cu alloy for additive manufacturing. Met. Mater. Int. 25, 633–640 (2019). https://doi.org/10.1007/s12540-018-00211-0
E. Çadırlı, Effect of solidification parameters on mechanical properties of directionally solidified Al-Rich Al–Cu alloys. Met. Mater. Int. 19, 411–422 (2013). https://doi.org/10.1007/s12540-013-3006-x
A.S. Barros, I.A. Magno, F.A. Souza et al., Measurements of microhardness during transient horizontal directional solidification of Al-Rich Al–Cu alloys: effect of thermal parameters, primary dendrite arm spacing and Al2Cu intermetallic phase. Met. Mater. Int. 21, 429–439 (2015). https://doi.org/10.1007/s12540-015-4499-2
X. Peng, Y. Li, G. Xu et al., Effect of precipitate state on mechanical properties, corrosion behavior, and microstructures of Al–Zn–Mg–Cu alloy. Met. Mater. Int. 24, 1046–1057 (2018). https://doi.org/10.1007/s12540-018-0057-z
M.V. Canté, J.E. Spinelli, N. Cheung et al., The correlation between dendritic microstructure and mechanical properties of directionally solidified hypoeutectic Al–Ni alloys. Met. Mater. Int. 16, 39–49 (2010). https://doi.org/10.1007/s12540-010-0039-2
Z. Guo, J. Jie, S. Liu, J. Liu, S. Yue, Y. Zhang, T. Li, Suppression of discontinuous precipitation in age-hardening Cu–15Ni–8Sn alloy by addition of V. J. Alloys Compd. 813, 152229 (2020). https://doi.org/10.1016/j.jallcom.2019.152229
Z. Guo, W. Sha, Quantification of precipitation hardening and evolution of precipitates. Mater. Trans. 43(6), 1273–1282 (2002). https://doi.org/10.2320/matertrans.43.1273
S. Ilangovan, Study of microstructure, hardness and wear properties of sand cast Cu–4Ni–6Sn bronze alloy. J. Eng. Sci. Technol. 10(4), 526–532 (2015)
S. Ilangovan, R. Sellamuthu, Effects of tin on hardness, wear rate and coefficient of friction of cast Cu–Ni–Sn alloys. J. Eng. Sci. Technol. 8(1), 34–43 (2013)
L.T. Chieu, S.M. Thang, N.D. Nam, P.M. Khanh, The effect of deformation on microstructure of Cu–Ni–Sn aging alloys. Key Eng. Mater. 682, 113–118 (2016). https://doi.org/10.4028/www.scientific.net/KEM.682.113
P. Virtanen, T. Tiainen, T. Lepistö, Precipitation at faceting grain boundaries of Cu–Ni–Sn alloys. Mater. Sci. Eng. A 251(1–2), 269–275 (1998). https://doi.org/10.1016/s0921-5093(98)00498-5
J.C. Rhu, S.S. Kim, Y.C. Jung, S.Z. Han, C.J. Kim, Tensile strength of thermomechanically processed Cu–9Ni–6Sn alloys. Metall. Mater. Trans. A 30(10), 2649–2657 (1999). https://doi.org/10.1007/s11661-999-0305-4
B.G. Lefevre, A.T. D’annessa, D. Kalish, Age hardening in Cu–15Ni–8Sn alloy. Metall. Trans. A 9(4), 577–586 (1978). https://doi.org/10.1007/bf02646415
P. Kratochvíl, J. Mencl, J. Pešička, S.N. Komnik, The structure and low temperature strength of the age hardened Cu–Ni–Sn alloys. Acta Metall. 32(9), 1493–1497 (1984). https://doi.org/10.1016/0001-6160(84)90095-6
R.Q. Liu, S.L. Yang, L. Chen, W.B. Xie, Y.S. Yu, H.R. Wang, Y.S. Deng, Microstructure of casting and solid solution of Cu–7.5Ni–5.0Sn alloy. Adv. Mater. Res. 581–582, 436–439 (2012). https://doi.org/10.4028/www.scientific.net/amr.581-582.436
M.J. Diánez, E. Donoso, M.J. Sayaués, N.A. Perejó, P.E. Sánchez-Jimánez, A.L.A. Pérez-Maqued, J.M. Criado, The calorimetric analysis as a tool for studying the aging hardening mechanism of a Cu–10wt%Ni–5.5wt%Sn alloy. J. Alloys Compd. 688, 288–294 (2016). https://doi.org/10.1016/j.jallcom.2016.07.021
G.R. Ebrahimi, A. Momeni, S.M. Abbasi, H. Monajatizadeh, Constitutive analysis and processing map for hot working of a Ni–Cu alloy. Met. Mater. Int. 19(1), 11–17 (2013). https://doi.org/10.1007/s12540-013-1003-8
Z. Deng, The effect of cold deformation on the kinetics of the spinodal decomposition of Cu–9Ni–6Sn–0.3Ce alloy. Trans. Nonferrous Met. Soc. China 2(1), 93–97 (1992)
J.T. Plewes, High-strength Cu–Ni–Sn alloys by thermomechanical processing. Metall. Trans. A 6(3), 537–544 (1975). https://doi.org/10.1007/BF02658411
S. Spooner, B.G. Lefevre, The effect of prior deformation on spinodal age hardening in Cu–15ni–8Sn alloy. Metall. Trans. A 11(7), 1085–1093 (1980). https://doi.org/10.1007/BF02668132
S.S. Anargh, A. Sunil, M.P. Yadukrishnan, K. Arun Raj, K.A. Anirudh, K.V. Shankar, Study of stress corrosion cracking resistance of copper based spinodal alloys-part 1. Mater. Today: Proc. 24, 2185–2192 (2019). https://doi.org/10.1016/j.matpr.2020.03.676
C. Dong, J.B. Qiang, Y.M. Wang, N. Jiang, J. Wu, P. Thiel, Cluster-based composition rule for stable ternary quasicrystals in Al-(Cu, Pd, Ni)-TM systems. Philos. Mag. 86(3–5), 263–274 (2006). https://doi.org/10.1080/14786430500281308
C. Dong, Q. Wang, J.B. Qiang, Y.M. Wang, N. Jiang, G. Han, Y.H. Li, J. Wu, J.H. Xia, From clusters to phase diagrams: composition rules of quasicrystals and bulk metallic glasses. J. Phys. D Appl. Phys. 40, R273–R291 (2007). https://doi.org/10.1088/0022-3727/40/15/R01
C. Pang, B. Jiang, Y. Shi, Q. Wang, C. Dong, Cluster-plus-glue-atom model and universal composition formulas [cluster](glue atom)x for BCC solid solution alloys. J. Alloys Compd. 652, 63–69 (2015). https://doi.org/10.1016/j.jallcom.2015.08.209
H. Hong, Q. Wang, C. Dong et al., Understanding the Cu–Zn brass alloys using a short-range-order cluster model: significance of specific compositions of industrial alloys. Sci. Rep. 4, 7065 (2014). https://doi.org/10.1038/srep07065
N.J. Li, X.N. Li, Z.M. Li, Q.X. Yu, Y.H. Zheng, Y.L. Hu, Q. Wang, C. Dong, Y.X. Jiang, X.W. Zhang, Differential effects of Zn and Co solutes on the properties of Cu–Ni–Sn alloys. Intermetallics (2020). https://doi.org/10.1016/j.intermet.2020.106894
A. Popovich, V. Sufiiarov, I. Polozov, E. Borisov, D. Masaylo, A. Orlov, Microstructure and mechanical properties of additive manufactured copper alloy. Mater. Lett. 179, 38–41 (2016). https://doi.org/10.1016/j.matlet.2016.05.064
C. Guo, J. Chen, X. Xiao, H. Huang, W. Wang, B. Yang, The effect of Co addition on the modulated structure coarsening and discontinuous precipitation growth kinetics of Cu–15Ni–8Sn alloy. J. Alloys Compd. (2020). https://doi.org/10.1016/j.jallcom.2020.155275
S.Z. Han, J.H. Ahn, Y.S. You et al., Discontinuous precipitation at the deformation band in copper alloy. Met. Mater. Int. 24, 23–27 (2018). https://doi.org/10.1007/s12540-017-6626-8
S. Xu, Y. Li, M. Zhang, T. Song, H. Ding, The effects of Nb additions on the microstructure evolution in Cu–9Ni–6Sn alloy. Intermetallics (2022). https://doi.org/10.1016/j.intermet.2022.107497
S.Y. Xu, Y.L. Li, M.X. Zhang, Y.F. Jiang, H. Ding, Effect of heat treatment conditions on microstructures and mechanical properties of Cu–9Ni–6Sn–0.22Nb alloy. Key Eng Mater (2021). https://doi.org/10.4028/www.scientific.net/KEM.904.124
K. Nogita, M.A.A. Mohd-Salleh, Q.T. Xuan, S. Smith, Effects of trace phosphorus in Sn–Cu–Ni wave solder dross. Mater. Sci. Forum 857, 49–52 (2016). https://doi.org/10.4028/www.scientific.net/MSF.857.49
P.S. Gilman, J.S. Benjamin, Mechanical alloying. Ann. Rev. Mater. Sci. 13, 279–300 (1983)
C. Zhao, Z. Wang, D. Li, D. Pan, B. Lou, Z. Luo, W. Zhang, Optimization of strength and ductility in an as-extruded Cu–15Ni–8Sn alloy by the additions of Si and Ti. J. Alloys Compd. 823, 153759 (2020). https://doi.org/10.1016/j.jallcom.2020.153759
L. Deyong, R. Tremblay, R. Angers, Microstructural and mechanical properties of rapidly solidified Cu–Ni–Sn alloys. Mater. Sci. Eng. A 124, 223 (1990)
L. Deyong, M. Elboujdaïni, R. Tremblay et al., Electrochemical behaviour of rapidly solidified and conventionally cast Cu–Ni–Sn alloys. J. Appl. Electrochem. 20, 756–762 (1990). https://doi.org/10.1007/BF01094302
C. Zhao, Z. Wang, D. Li, L. Kollo, Z. Luo, W. Zhang, K.G. Prashanth, Cu–Ni–Sn alloy fabricated by melt spinning and selective laser melting: a comparative study on the microstructure and formation kinetics. J. Mater. Res. Technol. 9(6), 13097–13105 (2020). https://doi.org/10.1016/j.jmrt.2020.09.047
W.A. Monteiro, J.A.G. Carrió, T.J. Masson, C.D. Abreu, I.M. Marques, L.C.E. da Silva, Microstructure and microanalysis studies of copper–nickel–tin alloys obtained by conventional powder metallurgy processing. Mater. Sci. Forum 660–661, 29–34 (2010). https://doi.org/10.4028/www.scientific.net/MSF.660-661.29
J.H. Reinshagen, N. Huntingdon, Powder metallurgical process for manufacturing coppernickel-tin spinodal alloy articles, United States Patent, Patent Number: 4,681,629 (1987)
N. Jordan, R. Schroder, H. Harig, R. Kienzler, Influences of the spray deposition process on the properties of copper and copper alloys. Mater. Sci. Eng. A 326, 51–62 (2002). https://doi.org/10.1016/S0921-5093(01)01425-3
D. Yang, F. Wang, M. Xie, Y. Zhang, H. Cui, M. Liu, et al, Study on structure and properties of Cu–7.5Ni–2.5Sn alloys prepared by spray deposition. Fenmo Yejin Jishu/Powder Metall. Technol. 27, 5–6 (2009).
P. Hermann, D.G. Morris, Relationship between microstructure and mechanical properties of a spinodally decomposing Cu–15Ni–8Sn alloy prepared by spray deposition. Metall. Mater. Trans. A 25, 1403–1412 (1994). https://doi.org/10.1007/BF02665473
O.J. Kwon, Y.C. Kim, K.B. Kim, Y.K. Lee, E. Fleury, Formation of amorphous phase in the binary Cu–Zr alloy system. Met. Mater. Int. 12(3), 207–212 (2006). https://doi.org/10.1007/BF03027532
Y. Ouyang, X. Gan, S. Zhang, Z. Li, K. Zhou, Y. Jiang, X. Zhang, Age-hardening behavior and microstructure of Cu–15Ni–8Sn–0.3Nb alloy prepared by powder metallurgy and hot extrusion. Trans. Nonferrous Met. Soc. China 27(9), 1947–1955 (2017). https://doi.org/10.1016/S1003-6326(17)60219-X
Z. Guo et al., Microstructure evolution of Cu–15Ni–8Sn alloy prepared by vertical semi-continuous casting with EMS. IOP Conf. Ser. Mater. Sci. Eng. 424, 012073 (2018). https://doi.org/10.1088/1757-899X/424/1/012073
G.M. Karthik, H.S. Kim, Heterogeneous aspects of additive manufactured metallic parts: a review. Met. Mater. Int. 27, 1–39 (2021). https://doi.org/10.1007/s12540-020-00931-2
E. Lee, S. Han, K. Euh et al., Effect of Ti addition on tensile properties of Cu–Ni–Si alloys. Met. Mater. Int. 17, 569 (2011). https://doi.org/10.1007/s12540-011-0807-7
F. Arias-González, J. del Val, R. Comesaña et al., Microstructure and crystallographic texture of pure titanium parts generated by laser additive manufacturing. Met. Mater. Int. 24, 231–239 (2018). https://doi.org/10.1007/s12540-017-7094-x
A.V. Rodrigues, T.S. Lima, T.A. Vida et al., Microstructure and tensile/corrosion properties relationships of directionally solidified Al–Cu–Ni alloys. Met. Mater. Int. 24, 1058–1076 (2018). https://doi.org/10.1007/s12540-018-0116-5
J. Wang, X.L. Zhou, J. Li, M. Brochu, Y.F. Zhao, Microstructures and properties of SLM-manufactured Cu–15Ni–8Sn alloy. Addit. Manuf. (2020). https://doi.org/10.1016/j.addma.2019.100921
G. Zhang, S. Liu, C. Chen, X. Zhang, X. Gan, Q. Lei, Z. Li, K. Zhou, Effect of heat treatment on microstructure and mechanical properties of a selective laser melted Cu–15Ni–8Sn alloy. Mater. Sci. Eng. A (2019). https://doi.org/10.1016/j.msea.2019.138132
C. Zhao, Z. Wang, D. Li, L. Kollo, Z. Luo, W. Zhang, K.G. Prashanth, Selective laser melting of Cu–Ni–Sn: a comprehensive study on the microstructure, mechanical properties, and deformation behavior. Int. J. Plast. 138, 102926 (2021)
D.H. Yang, Y.K. Kim, S.H. Park, K.A. Lee, Improved mechanical and thermophysical properties of additively manufactured Cu–Ni–Sn–P alloy by using aging treatment. J. Alloys Compd. (2021). https://doi.org/10.1016/j.jallcom.2021.160050
G. Zhang, C. Chen, X. Wang, P. Wang, X. Zhang, X. Gan, K. Zhou, Additive manufacturing of fine-structured copper alloy by selective laser melting of pre-alloyed Cu–15Ni–8Sn powder. Int. J. Adv. Manuf. Technol. 96(9–12), 4223–4230 (2018). https://doi.org/10.1007/s00170-018-1891-3
A. Popovich, V. Sufiiarov, I. Polozov, E. Borisov, D. Masaylo, A. Orlov, Microstructure and mechanical properties of additive manufactured copper alloy. Mater. Lett. (2016). https://doi.org/10.1016/j.matlet.2016.05.064
D. Tiberto, U.E. Klotz, F. Held, G. Wolf, Additive manufacturing of copper alloys: influence of process parameters and alloying elements. Mater. Sci. Technol. (2019). https://doi.org/10.1080/02670836.2019.1600840
Q. Jiang, P. Zhang, Z. Yu, H. Shi, D. Wu, H. Yan, X. Ye, Q. Lu, Y. Tian, A review on additive manufacturing of pure copper. Coatings 11, 740 (2021). https://doi.org/10.3390/coatings11060740
Z. Liang, W. Fan, P. Wang, Y. Wang, K. Zhang, J. Zhao, L. Peng, Revealing the effect of phase composition and transformation on the mechanical properties of a Cu–6Ni–6Sn–0.6Si alloy. Materials (2021). https://doi.org/10.3390/ma14185201
S. Kondo, A. Masusaki, K. Ogawa, T. Morimur, H. Nakashima, Effects of initial states on the spinodal decomposition of quenched and melt-spun Cu–15Ni–8Sn alloy. Mater. Trans. 56(1), 23–29 (2014). https://doi.org/10.2320/matertrans.M2014234
K.V. Shankar, R. Sellamuthu, A study on the effect of tin addition on wear and mechanical properties of spinodal alloys cast in metal mould. Int. J. Microstruct. Mater. Prop. 10(5–6), 381–401 (2015). https://doi.org/10.1504/IJMMP.2015.074994
J. Du, C. Dong, R. Melnik et al., Hidden electronic rule in the “cluster-plus-glue-atom” model. Sci. Rep. 6, 33672 (2016). https://doi.org/10.1038/srep33672
Z. Sun, X. Tan, C. Wang, M. Descoins, D. Mangelinck, S.B. Tor, E.A. Jägle, S. Zaefferer, D. Raabe, Reducing hot tearing by grain boundary segregation engineering in additive manufacturing: example of an AlxCoCrFeNi high-entropy alloy. Acta Mater. (2021). https://doi.org/10.1016/j.actamat.2020.116505
D. Karlsson, A. Marshal, F. Johansson, M. Schuisky, M. Sahlberg, J.M. Schneider, U. Jansson, Elemental segregation in an AlCoCrFeNi high-entropy alloy—a comparison between selective laser melting and induction melting. J. Alloys Compd. 784, 195–203 (2019). https://doi.org/10.1016/j.jallcom.2018.12.267
M. Sabelle, M. Walczak, J. Ramos-Grez, Scanning pattern angle effect on the resulting properties of selective laser sintered monolayers of Cu–Sn–Ni powder. Opt. Lasers Eng. 100, 1–8 (2018). https://doi.org/10.1016/j.optlaseng.2017.06.028
D. Dai, D. Gu, Thermal behavior and densification mechanism during selective laser melting of copper matrix composites: simulation and experiments. Mater. Des. 55, 482–491 (2014). https://doi.org/10.1016/j.matdes.2013.10.006
L. Bertini, F. Bucchi, F. Frendo, R. Valentini, Microstructure and fatigue behavior of a Ni–Cu–Sn alloy. Metals. 8(11), 888 (2018). https://doi.org/10.3390/met8110888
E.G. Baburaj, U.D. Kulkarni, E.S.K. Menon, R. Krishnan, Initial stages of decomposition in Cu–9Ni–6Sn. J. Appl. Crystallogr. 12(5), 476–480 (1979)
Z. Zheng, P. Guo, J. Li, T. Yang, Z. Song, C. Xu, M. Zhou, Effect of cold rolling on microstructure and mechanical properties of a Cu–Zn–Sn–Ni–Co–Si alloy for interconnecting devices. J. Alloys Compd. 831, 154842 (2020). https://doi.org/10.1016/j.jallcom.2020.154842
J. Li, G. Huang, X. Mi, L. Peng, H. Xie, Y. Kang, Microstructure evolution and properties of a quaternary Cu–Ni–Co–Si alloy with high strength and conductivity. Mater. Sci. Eng. A 766, 138390 (2019)
J. Li, G. Huang, X. Mi, L. Peng, H. Xie, Y. Kang, Effect of Ni/Si mass ratio and thermomechanical treatment on the microstructure and properties of Cu–Ni–Si alloys. Materials. 12(13), 2076 (2019). https://doi.org/10.3390/ma12132076
C. Crozet, M. Verdier, S. Lay et al., Effect of cooling rates on γ → α transformation and metastable states in Fe–Cu alloys with addition of Ni. Met. Mater. Int. 24, 681–692 (2018). https://doi.org/10.1007/s12540-018-0080-0
S.P. Singh, Spinodal theory: a common rupturing mechanism in spinodal dewetting and surface directed phase separation (Some technological aspects: spatial correlations and the significance of dipole-quadrupole interaction in spinodal dewetting). Adv. Condens. Matter Phys. 2011 526397 (2011). https://doi.org/10.1155/2011/526397
L.A. Bendersky, F.S. Biancaniello, M.E. Williams, Evolution of the two-phase microstructure L12 + DO22 in near-eutectoid Ni3(Al, V) alloy. J. Mater. Res. 9, 3068–3082 (1994). https://doi.org/10.1557/JMR.1994.3068
W. Huiqiang, F. Jicai, H. Jingshan, Microstructure evolution and fracture behaviour for electron beam welding of Ti–6Al–4V. Bull. Mater. Sci. 27, 387–392 (2004). https://doi.org/10.1007/BF02704777
C.S. Han, C.H. Bae, J.H. Lee, Characteristic of microstructure and mechanical properties in Ni–Al–Ti alloy system. Met. Mater. Int. 15, 891–895 (2009). https://doi.org/10.1007/s12540-009-0891-0
M. Zafar, H. Zhao, 4D printing: future insight in additive manufacturing. Met. Mater. Int. 26, 564–585 (2020). https://doi.org/10.1007/s12540-019-00441-w
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
On behalf of all authors, the corresponding author states that there is no conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Sankar, B., Vinay, C., Vishnu, J. et al. Focused Review on Cu–Ni–Sn Spinodal Alloys: From Casting to Additive Manufacturing. Met. Mater. Int. (2022). https://doi.org/10.1007/s12540-022-01305-6
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s12540-022-01305-6
Keywords
- Cu–Ni–Sn spinodal alloy
- Spinodal decomposition
- Elemental segregation
- Composition design
- Discontinuous precipitation
- Selective laser melting