Skip to main content
Log in

Improving the Low-Temperature Toughness of a High-Strength, Low-Alloy Steel with a Lamellarization Heat Treatment

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

A 15-min lamellarization (QL) heat treatment near the \(A_{c3}\) was applied to a 0.15C–3Ni–1.6Cr–0.5Mo HY-80 steel to increase its low-temperature toughness. The resultant microstructure and mechanical properties were characterized via microscopy, high-energy x-ray diffraction (HEXRD), quasi-static tensile testing, and Charpy impact testing. The results from the QL treatment were compared to a baseline of quench-and-tempered (QT) HY-80. When measured by HEXRD, the QL treatment increased both the volume fraction and lattice parameter of retained austenite, which is indicative of a more film-like austenite phase. This was accompanied by an increase in the low-temperature impact toughness versus the baseline QT condition without a significant decrease in the 0.2% offset yield strength, most likely due to the different austenite phase. The optimization of this film-like austenite phase may produce better low-alloy steels for low-temperature service without the cost of higher alloy contents.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. S.R. Heller Jr., USN, I. Fioriti, J. Vasta, Nav. Eng. J. 77, 29 (1965)

  2. S. Heller Jr., USN, I. Fioriti, J. Vasta, Nav. Eng. J. 77, 193 (1965)

  3. A.R. Willner, M. Salive, The effects of tempered nonmartensitic products on the notch toughness and mechanical properties of an HY-80 steel, Technical report, (David Taylor Model Basin, Washington, DC, 1965)

  4. K.-I. Sugimouto, M. Kobayashi, S.-I. Yasuki, Metall. Mater. Trans. A 28, 2637 (1997)

    Article  Google Scholar 

  5. J.I. Kim, C.K. Syn, J.W. Morris, Metall. Trans. A 14, 93 (1983)

    Article  CAS  Google Scholar 

  6. C.K. Syn, J.W. Morris, S. Jin, Metall. Trans. A 7, 1827 (1976)

    Article  Google Scholar 

  7. A.R. Willner, M. Salive, Effects of tempering above the lower critical temperature a sub c1 on the properties of an HY-80 steel, Technical report (David Taylor Model Basin, Washington, DC, Structural Mechanics Lab, 1966)

  8. M. Draper, S. Ankem, J. Mater. Sci. 54, 2601 (2019)

    Article  CAS  Google Scholar 

  9. K. Sugimoto, K. Nakano, S.-M. Song, T. Kashima, ISIJ Int. 42, 450 (2002)

    Article  CAS  Google Scholar 

  10. L.C. Chang, H.K.D.H. Bhadeshia, Mater. Sci. Technol. 11, 874 (1995)

    Article  CAS  Google Scholar 

  11. H.L. Yi, K.Y. Lee, H.K.D.H. Bhadeshia, Mater. Sci. Eng. A 528, 5900 (2011)

    Article  CAS  Google Scholar 

  12. H.K.D.H. Bhadeshia, D.V. Edmonds, Met. Sci. 17, 411 (1983)

    Article  CAS  Google Scholar 

  13. C. Wang, H. Qiu, Y. Kimura, T. Inoue, Mater. Sci. Eng. A 669, 48 (2016)

    Article  CAS  Google Scholar 

  14. Z.J. Xie, S.F. Yuan, W.H. Zhou, J.R. Yang, H. Guo, C.J. Shang, Mater. Design 59, 193 (2014)

    Article  CAS  Google Scholar 

  15. Q. Liu, H. Wen, H. Zhang, J. Gu, E.J. Lavernia, Metall. Mater. Trans. A 47, 1960 (2016)

    Article  CAS  Google Scholar 

  16. H. Guo, G.R. Purdy, M. Enomoto, H.I. Aaronson, Metall. Mater. Trans. A 37, 1721 (2006)

    Article  Google Scholar 

  17. M. Hillert, Phase Equilibria, Phase Diagrams and Phase Transformations: Their Thermodynamic Basis (Cambridge University Press, Cambridge, 1998)

  18. W.C. Leslie, The Physical Metallurgy of Steels (Hempisphere Publishing Corporation, London, 1981)

  19. A. Seki, K. Hayashi, T. Amino, G. Shigesato, T. Nozaki, M. Azuma, M. Suehiro, ISIJ Int. 59, 2311 (2019)

    Article  CAS  Google Scholar 

  20. J. Odqvist, M. Hillert, J. Ågren, Acta Mater. 50, 3213 (2002)

  21. L. Kaufman, J. Ågren, Scripta Mater. 70, 3 (2014)

    Article  CAS  Google Scholar 

  22. J.E. Holthaus, M.G. Koul, A.L. Moran, Eng. Fail. Anal. 13, 1397 (2006)

    Article  CAS  Google Scholar 

  23. J.-O. Andersson, T. Helander, L. Hoeglund, P. Shi, B. Sundman, Calphad 26, 273 (2002)

    Article  CAS  Google Scholar 

  24. ASTM E1382-97 (2015), Standard Test Methods for Determining Average Grain Size Using Semiautomatic and Automatic Image Analysis (ASTM International, West Conshohocken, 2015)

  25. B.H. Toby, R.B. Von Dreele, J. Appl. Crystallogr. 46, 544 (2013)

    Article  CAS  Google Scholar 

  26. ASTM E10-18, Standard Test Method for Brinell Hardness of Metallic Materials (ASTM International, West Conshohocken, 2018)

  27. ASTM E8/E8M-16, Standard Test Methods for Tension Testing of Metallic Materials (ASTM International, West Conshohocken, 2016)

  28. ASTM E23-18, Standard Test Methods for Notched Bar Impact Testing of Metallic Materials (ASTM International, West Conshohocken, 2018)

  29. ASTM E2298-18, Standard Test Method for Instrumented Impact Testing of Metallic Materials (ASTM International, West Conshohocken, 2018)

  30. E. Lucon, R. Chaouadi, E. van Walle, Different approaches for the verification of force values measured with instrumented charpy strikers. J. ASTM Int. Vol. 3 (2006)

  31. D. Lauria, E. Lucon, NIST Instrumented Charpy Analysis Software (NICAS): User’s Manual. NIST Interagency/Internal Report (NISTIR) (National Institute of Standards and Technology, Gaithersburg, 2020)

  32. G.W.H. Höhne, W.F. Hemminger, H.-J. Flammersheim, Differential Scanning Calorimetry (Springer, Berlin, Heidelberg, 2013)

  33. G.P. Krielaart, C.M. Brakman, S. Van Der Zwaag, J. Mater. Sci. 31, 1501 (1996)

    Article  CAS  Google Scholar 

  34. S. Raju, B.J. Ganesh, A. Banerjee, E. Mohandas, Mater. Sci. Eng. A 465, 29 (2007)

    Article  Google Scholar 

  35. T9074-BD-GIB-010/0300, Base materials for critical applications: requirements for low alloy steel plate, forgings, castings, shapes, bars, and heads of HY-80/100/130 and HSLA-80/100 (Navsea Technical Publication, Washington, D.C., 2012)

  36. G.D. Fearnehough, in Proceedings of an International Conference on Dynamic Crack Propagation, ed. by G.C. Sih (Springer, Dordrecht, 1973), pp. 77–101

  37. J.-C. Zhao (ed.), Methods for Phase Diagram Determination (Elsevier, Amsterdam, 2011)

  38. M. Hillert, Scripta Mater. 46, 447 (2002)

    Article  CAS  Google Scholar 

  39. J.R. Bradley, H.I. Aaronson, Metall. Trans. A 12, 1729 (1981)

    Article  CAS  Google Scholar 

  40. D. Dyson, B. Holmes, J. Iron Steel Inst. 208, 469 (1970)

    CAS  Google Scholar 

  41. D. Isheim, A.H. Hunter, X.J. Zhang, D.N. Seidman, Metall. Mater. Trans. A 44, 3046 (2013)

  42. R.W.K. Honeycombe, H.K.D.H Bhadeshia, Steels: Microstructure and Properties, 2nd edn. (Butterworth-Heinemann, Oxford, 1995)

Download references

Acknowledgements

The authors would like to acknowledge several individuals and organizations for their help with this work. Drs. Matthew Draper and Paul Lambert at the Naval Surface Warfare Center, Carderock Division for their consultation and encouragement. Dr. Lambert also generously offer to share some of his beam time at APS and his knowledge on analyzing HEXRD data with us. Dr. Jun-Sang Park and the rest of the staff at the Advanced Photon Source and the 1-ID beamline for their amazing work not only for testing our samples, but but also for operating such a wonderful facility that enables incredible scientific advancement. Additionally, the Steel Founders’ Society of America also generously supported this research, providing guidance on industrial casting processes. Partial financial support was provided by DLA-Troop Support, Philadelpha, PA and the Defense Logistics Agency Information Operations, J68, Research & Development, Ft. Belvoir, VA (Grant Number: SP4701-20-C-0076). Disclaimer: The publication of this material does not constitute approval by the government of the findings or conclusion herein. Wide distribution or announcement of this material shall not be made without specific approval by the sponsoring government activity.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew Frichtl.

Ethics declarations

Conflict of interest

The authors declare they have no known conflict of interest to this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Frichtl, M., Anwar, Y., Strifas, A. et al. Improving the Low-Temperature Toughness of a High-Strength, Low-Alloy Steel with a Lamellarization Heat Treatment. Met. Mater. Int. 29, 879–891 (2023). https://doi.org/10.1007/s12540-022-01291-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-022-01291-9

Keywords

Navigation