Skip to main content

Effect of Cooling Rate on Pitting Corrosion Behavior of 904L Austenitic Stainless Steel in a Simulated Flue Gas Desulfurization Solution

Abstract

904L super austenitic stainless steel is prone to harmful secondary phase precipitation, which reduces corrosion resistance. The cooling rate during the solidification of steel is one of the critical factors affecting the precipitation of brittle phases in stainless steel metals. In this paper, the effect of the cooling rates (6, 50, 100, 500, and 1000 °C min−1) on the initial corrosion behavior of 904L steel in a simulated flue gas desulfurization (FGD) solution was studied by electrochemical measurements and microscopic morphology observation. The results show that as the cooling rates increases, the primary solidification temperature and the secondary dendrite arm spacing decrease. The precipitated phase in the steel is a σ-phase mainly distributed interdendrites and forms zones of chromium and molybdenum depletion, reducing pitting resistance. With the increase in the cooling rate, the corrosion resistance increases first and then decreases, and reaches the maximum at 100 °C min−1. At the same time, different cooling rates result in different contents of Cr and Mo in σ phase. At 100 °C min−1, the concentration gradient of Cr and Mo near the interdendrites is the lowest compared with other cooling rates, which inhibits the growth rate of the σ phase nuclei and produces a more uniform microstructure. Corrosion test results show that pitting corrosion is sensitive to the increase in the contents of Cr and Mo in the σ phase. The higher the content of Cr and Mo in the σ phase, the more serious the depletion of Cr and Mo near the interdendrites, and the worse the corrosion resistance.

Graphical Abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. J. Bordzilowski, K. Darowicki, Anti-Corros. Method. Mater. 45, 388 (1998)

    Article  Google Scholar 

  2. Z.B. Wang, H.X. Hu, Y.G. Zheng, W. Ke, Y.X. Qiao, Corros. Sci. 103, 50 (2016)

    CAS  Article  Google Scholar 

  3. Z. Cui, L. Wang, M. Zhong, F. Ge, H. Gao, C. Man, C. Liu, X. Wang, J. Electrochem. Soc. 165, C542 (2018)

    Article  Google Scholar 

  4. S. Krakowiak, K. Darowicki, Prog. Org. Coat. 117, 141 (2018)

    CAS  Article  Google Scholar 

  5. P.Y. Pan, H. Chen, Z.Y. Liang, Q.X. Zhao, Corros. Sci. 131, 126 (2018)

    CAS  Article  Google Scholar 

  6. Y. Cao, M. Norell, Oxid. Met. 80, 479 (2013)

    CAS  Article  Google Scholar 

  7. R. Jiang, G. Zou, W. Shi, Y. Liang, S. Xiang, J. Mater. Eng. Perform. 28, 1863 (2019)

    CAS  Article  Google Scholar 

  8. I. Betova, M. Bojinov, T. Laitinen, K. Mäkelä, P. Pohjanne, T. Saario, Corros. Sci. 44, 2675 (2002)

    CAS  Article  Google Scholar 

  9. B.A.R.S. Barbosa, S.S.M. Tavares, A. Cobuci, M.C.S. de Macêdo, Corrosion 68, 739 (2012)

    CAS  Article  Google Scholar 

  10. D. Guo, C.T. Kwok, S.L.I. Chan, L.M. Tam, Surf. Coat. Tech. 408, 126811 (2021)

    Article  Google Scholar 

  11. G.M. Rashed, W.A. Mohrez, A.A.M.A. El-Hamid, I.M. Ghayad, Key Eng. Mater. 835, 384 (2020)

    Article  Google Scholar 

  12. D. Yang, Y.L. Huang, P. Peng, X.J. Liu, B.B. Zhang, Int. J. Electrochem. Sci. 14, 6133 (2019)

    CAS  Google Scholar 

  13. G.B. Zou, W. Shi, S. Xiang, J.M. Ji, G.Q. Ma, R.G. Ballinger, RSC Adv. 8, 2811 (2018)

    CAS  Article  Google Scholar 

  14. X. Liu, D. Meng, Y. Wang, H. Chen, M. Jin, J. Mater. Eng. Perform. 24, 1079 (2015)

    CAS  Article  Google Scholar 

  15. J. Michalska, B. Chmiela, J. Labanowski, W. Simka, J. Mater. Eng. Perform. 23, 2760 (2014)

    CAS  Article  Google Scholar 

  16. Y. Han, G.W. Liu, D.N. Zou, R. Liu, G.J. Qiao, Mater. Sci. Eng. A 565, 342–350 (2013)

    CAS  Article  Google Scholar 

  17. N. Hiraide, K. Haruhiko, Zairyo-to-Kankyo 58, 20 (2009)

    CAS  Article  Google Scholar 

  18. M.J. Perricone, T.D. Anderson, C.V. Robino, J.N. DuPont, J.R. Michael, Metall. Mater. Trans. A 38, 1976 (2007)

  19. M. Torkar, F. Vodopivec, S. Petovar, Mater. Sci. Eng. A 173, 313 (1993)

    Article  Google Scholar 

  20. R.-I. Hsieh, H.-Y. Liou, Y.-T. Pan, J. Mater. Sci. Perform. 10, 526 (2001)

    CAS  Google Scholar 

  21. T.H. Chen, J.R. Yang, Mater. Sci. Eng. A 311, 28 (2001)

    Article  Google Scholar 

  22. L.H. Chiu, W.C. Hsieh, C.H. Wu, Mater. Sci. Eng. A 354, 82 (2003)

    Article  Google Scholar 

  23. L. Chen, H. Tan, Z. Wang, J. Li, Y. Jiang, Corros. Sci. 58, 168 (2012)

    CAS  Article  Google Scholar 

  24. H. Yan, Z. He, N. Lü, C. Wei, T. Xu, J. Liu, Mater. Corros. 71, 1257 (2020)

    Article  Google Scholar 

  25. J.X. Wang, W. Shi, S. Xiang, R.G. Ballinger, Corros. Sci. 181, 109234 (2021)

    Article  Google Scholar 

  26. M. Benoit, C. Bataillon, B. Gwinner, F. Miserque, M.E. Orazem, C.M. Sánchez-Sánchez, B. Tribollet, V. Vivier, Electrochim. Acta 201, 340 (2016)

    CAS  Article  Google Scholar 

  27. C.T. Liu, J.K. Wu, Corros. Sci. 49, 2198 (2007)

    CAS  Article  Google Scholar 

  28. A.M.P. Simoes, M.G.S. Ferrira, B. Rondot, M. da Cunha Belo, J. Electrochem. Soc. 137, 82–87 (1990)

    CAS  Article  Google Scholar 

  29. J.G. Bai, Y.S. Cui, J. Wang, N. Dong, M.S. Qurashi, H.R. Wei, Y.C. Yang, P.D. Han, J. Iron Steel Res. Int. 26, 712 (2019)

    Article  Google Scholar 

  30. C.S. Wang, Y.S. Wu, Y.A. Guo, J.T. Guo, L.Z. Zhou, J. Alloy. Compd. 784, 266 (2019)

    CAS  Article  Google Scholar 

  31. A. Perron, C. Toffolon-Masclet, X. Ledoux, F. Buy, T. Guilbert, S. Urvoy, S. Bosonnet, B. Marini, F. Cortial, G. Texier, C. Harder, V. Vignal, P. Petit, J. Farre, E. Suzon, Acta Mater. 79, 16 (2014)

    CAS  Article  Google Scholar 

  32. Y.S. Hao, J. Li, X. Li, W.C. Li, G.M. Cao, C.G. Li, Z.Y. Liu, J. Mater. Process. Tech. 275, 116326 (2020)

    Article  Google Scholar 

  33. A.D. Schino, M.G. Mecozzi, M. Barteri, J.M. Kenny, J. Mater. Sci. 35, 375 (2000)

    Article  Google Scholar 

  34. N. Sato, J. Electrochem. Soc. 129, 255 (1982)

    CAS  Article  Google Scholar 

  35. D.E. Williams, M. Fleischmann, J. Stewart, T. Brooks, Mater. Sci. Forum. 8, 151 (1986)

    CAS  Article  Google Scholar 

  36. Y. Hou, C. Cheng T. Cao, X. Min, J. Zhao, Int. J. Electrochem. Sci. 13, 7095 (2018)

    CAS  Article  Google Scholar 

  37. R.L.D. Monteiro, S.D. Ananda, Rev. Technol. ESPOL 30, 79 (2017)

    Google Scholar 

  38. M.H. Moayed, R.C. Newman, Corros. Sci. 48, 3513 (2006)

    CAS  Article  Google Scholar 

  39. C.F. Dong, A.Q. Fu, X.G. Li, Y.F. Cheng, Electrochim. Acta 54, 628 (2008)

    CAS  Article  Google Scholar 

  40. Y. Tsutsumi, A. Nishikata, T. Tsuru, Corros. Sci. 49, 1394 (2007)

    CAS  Article  Google Scholar 

  41. M.V. Cardoso, S.T. Amaral, E.M.A. Martini, Corros. Sci. 50, 2429 (2008)

    CAS  Article  Google Scholar 

  42. S.Y. Kim, H.S. Kwon, H.S. Kim, Solid State Phenomen. 124–126, 1533 (2007)

    Article  Google Scholar 

  43. K.L. Chao, H.Y. Liao, J.J. Shyue, S.S. Lian, Metall. Mater. Trans. B 45, 381 (2014)

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge support of this work by the National Natural Science Foundation of China (51774226), the Major Program of Science and Technology in Shanxi Province (Nos. 20191102006), the Shaanxi Outstanding Youth Fund project (Grant Number 2021JC-45) and Key international cooperation projects in Shaanxi Province (Grant Number 2020KWZ-007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dening Zou.

Ethics declarations

Conflict of interest

We declare that we have no financial and personal relationships with other people or organizations that can inappropriately influence our work, there is no professional or other personal interest of any nature or kind in any product, service and/or company that could be construed as influencing the position presented in, or the review of, the manuscript entitled “Effect of cooling rate on pitting corrosion behavior of 904L austenitic stainless  steel in a simulated flue gas desulfurization solution”.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, M., Zou, D., Li, Y. et al. Effect of Cooling Rate on Pitting Corrosion Behavior of 904L Austenitic Stainless Steel in a Simulated Flue Gas Desulfurization Solution. Met. Mater. Int. (2022). https://doi.org/10.1007/s12540-022-01255-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12540-022-01255-z

Keywords

  • 904L super austenitic stainless steel
  • Different cooling rates
  • σ phase
  • Pitting corrosion
  • Flue gas desulfurization solution