Skip to main content
Log in

Numerical Analysis on the Spatiotemporal Characteristics of the Portevin–Le Chatelier Effect in Ti-12Mo Alloy

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

A simplified 3D FE model based on McCormick’s model is developed to numerically predict the spatiotemporal behaviors of the PLC effect in Ti-12Mo alloy tensile tests at 350 °C with strain rates from the order of 10–4 s−1 to 10–2 s−1. The material parameter identification procedure is firstly presented in details, and the simulated results are highly consistent with experimental ones, especially in terms of stress drop magnitudes and PLC band widths. The distribution of simulated stress drop magnitudes at a constant tensile velocity (0.01 mm/s) follows a normal distribution and its peak value is in the range of 26–28 MPa. Furthermore, the simulated band width slightly fluctuates with the increase of true strain and its average value is about 1.5 mm. Besides, the staircase behavior of strain–time curves and the hopping propagation of the PLC band are observed in Ti-12Mo alloy tensile process, which are related to the strain localization and stress drop magnitudes.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. S.Y. Luo, J.N. Yao, J. Li, H. Du, H.Y. Liu, F.P. Yu, Influence of forging velocity on temperature and phases of forged Ti-6Al-4V turbine blade. J. Mater. Res. Technol. 9(6), 12043–12051 (2020)

    Article  CAS  Google Scholar 

  2. S. Gurel, M.B. Yagci, D. Canadinc, G. Gersein, B. Bal, H.J. Maier, Fracture behavior of novel biomedical Ti-based high entropy alloys under impact loading. Mater. Sci. Eng. A 803(28), 140456 (2021)

    Article  CAS  Google Scholar 

  3. P.Y. Li, X.D. Ma, T. Tong, Y.S. Wang, Microstructural and mechanical properties of β-type Ti-Mo-Nb biomedical alloys with low elastic modulus. J. Alloy. Compd. 815, 152412 (2020)

    Article  CAS  Google Scholar 

  4. S.E. Haghighi, H. Attar, I.V. Okulov, M.S. Dargusch, D. Kent, Microstructural evolution and mechanical properties of bulk and porous low-cost Ti-Mo-Fe alloys produced by powder metallurgy. J. Alloy. Compd. 853(6), 156768 (2021)

    Article  Google Scholar 

  5. W. Xu, M. Chen, X. Lu, D.W. Zhang, H.P. Singh, J.S. Yu, Y. Pan, X.H. Qu, C.Z. Liu, Effects of Mo content on corrosion and tribocorrosion behaviours of Ti-Mo orthopaedic alloys fabricated by powder metallurgy. Corros. Sci. 168, 108557 (2020)

    Article  CAS  Google Scholar 

  6. N. Kang, Y.L. Li, X. Lin, E.H. Feng, W.D. Huang, Microstructure and tensile properties of Ti-Mo alloys manufactured via using laser powder bed fusion. J. Alloy. Compd. 771, 877–884 (2019)

    Article  CAS  Google Scholar 

  7. F. Sun, F. Prima, T. Gloriant, High-strength nanostructured Ti-12Mo alloy from ductile metastable beta state precursor. Mater. Sci. Eng. A 527(16–17), 4262–4269 (2010)

    Article  Google Scholar 

  8. S. Banerjee, U.M. Naik, Plastic instability in an omega forming Ti-15% Mo alloy. Acta Mater. 44(9), 3667–3677 (1996)

    Article  CAS  Google Scholar 

  9. S.Y. Luo, P. Castany, S. Thuillier, M. Huot, Spatiotemporal characteristics of Portevin-Le Chatelier effect in Ti-Mo alloys under thermo-mechanical loading. Mater. Sci Eng. A 733, 137–143 (2018)

    Article  CAS  Google Scholar 

  10. S.Y. Luo, P. Castany, S. Thuillier, Microstructure, thermo-mechanical properties and Portevin-Le Chatelier effect in metastable β Ti-xMo alloys. Mater. Sci. Eng. A 755, 61–70 (2019)

    Article  Google Scholar 

  11. D. Yuzbekova, A. Mogucheva, D. Zhemchuzhnikova, T. Lebedkina, M. Lebyodkin, R. Kaibyshev, Effect of microstructure on continuous propagation of the Portevin-Le Chatelier deformation bands. Int. J. Plast. 96, 210–226 (2017)

    Article  CAS  Google Scholar 

  12. K. Chihab, Y. Estrin, L.P. Kubin, J. Vergnol, The kinetics of the Portevin-Le Chatelier bands in an Al-5at%Mg alloy. Scr. Metal. 21(2), 203–208 (1987)

    Article  CAS  Google Scholar 

  13. H.A. Amokhtar, S. Boudrahem, C. Fressengeas, Spatiotemporal aspects of jerky flow in Al-Mg alloys, in relation with Mg content. Scr. Mater. 54(12), 2113–2118 (2006)

    Article  Google Scholar 

  14. R. Zhang, C.G. Tian, C.Y. Cui, Y.Z. Zhou, X.F. Sun, Portevin-Le Châtelier effect in a wrought Ni-Co based superalloy. J. Alloy. Compd. 818, 152863 (2020)

    Article  CAS  Google Scholar 

  15. S.Y. Chen, W.D. Li, F.C. Meng, Y. Tong, H. Zhang, K.K. Tseng, J.W. Yeh, Y. Ren, F. Xu, Z.G. Wu, P.K. Liaw, On temperature and strain-rate dependence of flow serration in HfNbTaTiZr high-entropy alloy. Scr. Mater. 200(5), 113919 (2021)

    Article  CAS  Google Scholar 

  16. D. Yuzbekova, A. Mogucheva, Y. Borisova, R. Kaibyshev, On the mechanisms of nucleation and subsequent development of the PLC bands in an AlMg alloy. J. Alloy. Compd. 868, 159135 (2021)

    Article  CAS  Google Scholar 

  17. C.Y. Cui, R. Zhang, Y.Z. Zhou, X.F. Sun, Portevin-Le Châtelier effect in wrought Ni-based superalloys: experiments and mechanisms. J. Mater. Sci. Technol. 51, 16–31 (2020)

    Article  CAS  Google Scholar 

  18. Y. Choi, J.J. Ha, M.G. Lee, Y.P. Korkolis, Effect of plastic anisotropy and Portevin-Le Chatelier bands on hole-expansion in AA7075 sheets in -T6 and -W tempers. J. Mater. Process. Technol. 296, 117211 (2021)

    Article  CAS  Google Scholar 

  19. M. Mehenni, H.A. Amokhtar, C. Fressengeas, Spatiotemporal correlations in the Portevin-Le Chatelier band dynamics during the type B-type C transition. Mater. Sci. Eng. A 756, 313–318 (2019)

    Article  CAS  Google Scholar 

  20. K.C. Yu, L.G. Hou, M.X. Guo, D.Y. Li, D.N. Huang, L.Z. Zhuang, J.S. Zhang, P.D. Wu, A method for determining r-value of aluminum sheets with the Portevin-Le Chatelier effect. Mater. Sci. Eng. A 814, 141246 (2021)

    Article  CAS  Google Scholar 

  21. Y.K. Liu, Y.L. Cai, C.G. Tian, G.L. Zhang, G.M. Han, S.H. Fu, C.Y. Cui, Q.C. Zhang, Experimental investigation of a Portevin-Le Chatelier band in Ni-Co-based superalloys in relation to γʹ precipitates at 500 ℃. J. Mater. Sci. Technol. 45, 35–41 (2020)

    Article  Google Scholar 

  22. B. Reyne, P.Y. Manach, N. Moës, Macroscopic consequences of Piobert-Lüders and Portevin-Le Chatelier bands during tensile deformation in Al-Mg alloys. Mater. Sci. Eng. A 746, 187–196 (2019)

    Article  CAS  Google Scholar 

  23. M. Callahan, O. Hubert, F. Hild, A. Perlade, J.H. Schmitt, Coincidence of strain-induced TRIP and propagative PLC bands in medium Mn steels. Mater. Sci. Eng. A 704, 391–400 (2017)

    Article  CAS  Google Scholar 

  24. L.P. Kubin, Y. Estrin, The Portevin-Le Chatelier effect in deformation with constant stress rate. Acta Metall. 33(3), 397–407 (1985)

    Article  Google Scholar 

  25. P.G. McCormick, Theory of flow localisation due to dynamic strain ageing. Acta Metall. 36(12), 3061–3067 (1988)

    Article  CAS  Google Scholar 

  26. S. Zhang, P.G. McCormick, Y. Estrin, The morphology of Portevin-Le Chatelier bands: finite element simulation for Al-Mg-Si. Acta Mater. 49(6), 1087–1094 (2001)

    Article  CAS  Google Scholar 

  27. M. Mazière, J. Besson, S. Forest, B. Tanguy, H. Chalons, F. Vogel, Numerical modelling of the Portevin-Le Chatelier effect. Eur. J. Comput. Mech. 17(5–7), 761–772 (2008)

    Article  Google Scholar 

  28. P.Y. Manach, S. Thuillier, J.W. Yoon, J. Coër, H. Laurent, Kinematics of Portevin-Le Chatelier bands in simple shear. Int. J. Plast. 58, 66–83 (2014)

    Article  CAS  Google Scholar 

  29. L.Z. Mansouri, J. Coër, S. Thuillier, H. Laurent, P.Y. Manach, Investigation of Portevin-Le Châtelier effect during Erichsen test. Int. J. Mater. Form. 13(5), 687–697 (2019)

    Article  Google Scholar 

  30. J. Belotteau, C. Berdin, S. Forest, A. Parrot, C. Prioul, Mechanical behavior and crack tip plasticity of a strain aging sensitive steel. Mater. Sci. Eng. A 526(1–2), 156–165 (2009)

    Article  Google Scholar 

  31. L.Z. Mansouri, S. Thuillier, P.Y. Manach, Thermo-mechanical modeling of Portevin-Le Châtelier instabilities under various loading paths. Int. J. Mech. Sci. 115, 676–688 (2016)

    Article  Google Scholar 

  32. C. Moon, S. Thuillier, J. Lee, M.G. Lee, Mechanical properties of solution heat treated Al-Zn-Mg-Cu (7075) alloy under different cooling conditions: analysis with full field measurement and finite element modeling. J. Alloy. Compd. 856, 158180 (2020)

    Article  Google Scholar 

  33. S. Graff, H. Dierke, S. Forest, H. Neuhäuser, J.L. Strudel, Finite element simulations of the portevin-Le Chatelier effect in metal-matrix composites. Philos. Mag. 88(28–29), 3389–3414 (2008)

    Article  CAS  Google Scholar 

  34. H. Dierke, F. Krawehl, S. Graff et al., Portevin–LeChatelier effect in Al–Mg alloys: influence of obstacles–experiments and modelling. Comput. Mater. Sci. 39(1), 106–112 (2007)

    Article  CAS  Google Scholar 

  35. A. Benallal, T. Berstad, T. Børvik, O.S. Hopperstad, I. Koutiri, R.N.D. Codes, An experimental and numerical investigation of the behaviour of AA5083 aluminium alloy in presence of the Portevin-Le Chatelier effect. Int. J. Plast. 24(10), 1916–1945 (2008)

    Article  CAS  Google Scholar 

  36. T. Furuhara, T. Makino, Y. Idei, H. Ishigaki, A. Takada, T. Maki, Morphology and crystallography of α precipitates in β Ti-Mo binary alloys. Mater. Trans. JIM 39(1), 31–39 (1998)

    Article  CAS  Google Scholar 

  37. A.M. Prior, Applications of implicit and explicit finite element techniques to metal forming. J. Mater. Process. Technol. 45(1–4), 649–656 (1994)

    Article  Google Scholar 

  38. N.A. Sene, P. Balland, K. Bouabdallah, Experimental study of Portevin-Le Châtelier bands on tensile and plane strain tensile tests. Arch. Civ. Mech. Eng. 18(1), 94–102 (2018)

    Article  Google Scholar 

  39. S.W. Tu, X.B. Ren, J.Y. He, Z.L. Zhang, Stress-strain curves of metallic materials and post-necking strain hardening characterization: a review. Fatigue Fract. Eng. Mater. Struct. 43(1), 3–19 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Hubei Provincial Natural Science Foundation of China (Grant no. 2020CFB115).

Author information

Authors and Affiliations

Authors

Contributions

SL: Conceptualization, Methodology, Software, Writing—Original Draft. YJ: Investigation, Validation, Writing—original draft. ST: Data curation, Writing- review & editing. PC: Data curation, Writing—review & editing. LZ: Supervision, Writing—Review & Editing.

Corresponding author

Correspondence to Shiyuan Luo.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, S., Jiang, Y., Thuillier, S. et al. Numerical Analysis on the Spatiotemporal Characteristics of the Portevin–Le Chatelier Effect in Ti-12Mo Alloy. Met. Mater. Int. 29, 269–279 (2023). https://doi.org/10.1007/s12540-022-01226-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-022-01226-4

Keywords

Navigation