Skip to main content
Log in

Low-Cycle Fatigue Behavior of Reduced Activation Ferritic-Martensitic Steel at Elevated Temperatures

  • Published:
Metals and Materials International Aims and scope Submit manuscript

A Correction to this article was published on 06 April 2023

This article has been updated

Abstract

Changes in the low-cycle fatigue (LCF) behavior of reduced activation ferritic-martensitic (RAFM) steel containing trace amount of Zr—namely, Advanced Reduced Activation Alloy (ARAA) were presented in the temperature range of 573 to 873 K. The fatigue lifetime decreased significantly as the temperature increased from 573 to 823 K, but it was rather similar between 823 and 873 K, where the tensile properties deteriorated most rapidly. The decrease in lifetime at elevated temperatures is mainly due to the disappearance of the initial tempered martensitic structure during cycling resulting in rapid cyclic softening and local oxidation at surface slip bands which led to earlier crack initiation. The fatigue lifetime and cyclic softening behavior of ARAA were compared with those of the other conventional RAFM steels.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Change history

References

  1. K. Mergia, N. Boukos, J. Nucl. Mater. 373, 1 (2008)

    Article  CAS  Google Scholar 

  2. B. van der Schaaf, F. Tavassoli, C. Fazio, E. Rigal, E. Diegele, R. Lindau, G. LeMarois, Fusion Eng. Des. 69, 197 (2003)

    Article  Google Scholar 

  3. F. Tavassoli, Fusion demo interim structural design criterion, Appendix A: Material design limit data A3.S18E Eurofer steel, DMN Technical Report, TW4-TTMS-005-D01 (2004)

  4. B. Fournier, M. Sauzay, C. Caes, M. Noblecourt, M. Mottot, A. Bougault, V. Rabeau, A. Pineau, Int. J. Fatigue 30, 663 (2008)

    Article  CAS  Google Scholar 

  5. K. Aoto, R. Komine, F. Ueno, H. Kawasaki, Y. Wada, Nucl. Eng. Des. 153, 97 (1994)

    Article  CAS  Google Scholar 

  6. V. Shankar, V. Bauer, R. Sandhya, M.D. Mathew, H.-J. Christ, J. Nucl. Mater. 420, 23 (2012)

    Article  CAS  Google Scholar 

  7. J. Aktaa, R. Schmitt, Fusion Eng. Des. 81, 2221 (2006)

    Article  CAS  Google Scholar 

  8. A. Nagesha, R. Kannan, G.V.S. Sastry, R. Sandhya, V. Singh, K.B.S. Rao, M.D. Mathew, Mater. Sci. Eng. A 554, 95 (2012)

    Article  CAS  Google Scholar 

  9. C.R. Brinkman, Int. Metal. Rev. 30, 235 (1985)

    CAS  Google Scholar 

  10. B. Fournier, M. Sauzay, A. Pineau, Int. J. Plasticity 27, 1803 (2011)

    Article  CAS  Google Scholar 

  11. A.F. Armas, C. Petersen, R. Schmitt, M. Avalos, I. Alvarez, J. Nucl. Mater. 329–333, 252 (2004)

    Article  Google Scholar 

  12. A. Nagesha, M. Valsan, R. Kannan, K.B.S. Rao, S.L. Mannan, Int. J. Fatigue 24, 1285 (2002)

    Article  CAS  Google Scholar 

  13. G. Golanski, S. Mrozinski, Eng. Fail. Anal. 35, 692 (2013)

    Article  CAS  Google Scholar 

  14. S. Kim, J.R. Weertman, Metall. Trans. A 19, 999 (1988)

    Article  CAS  Google Scholar 

  15. F. Benjamin, S. Maxime, R. Alexandra, B. Françoise, P. André, J. Nucl. Mater. 386–388, 71 (2009)

    Google Scholar 

  16. Y.-J. Oh, G.K. Ahiale, Y.-B. Chun, S. Cho, Y.-H. Park, W.-D. Choi, K.-H. Ebo Anderson, Mater. Sci. Eng. A 802, 1404 (2021)

    Article  Google Scholar 

  17. X. Gong, P. Marmy. B. Verlinden, M. Wevers, M. Seefeldt, Corros. Sci. 94, 377 (2015)

  18. M. Jurgens, J. Olbricht, B. Fedelich, B. Skrotzki, Metals 9, 99 (2019)

    Article  Google Scholar 

  19. P. Marmy, T. Kruml, J. Nucl. Mater. 377, 52 (2008)

    Article  CAS  Google Scholar 

  20. H. Tanigawa, E. Gaganidze, T. Hirose, M. Ando, S.J. Zinkle, R. Lindau, E. Diegele, Nucl. Fusion 57, 092004 (2017)

    Article  Google Scholar 

  21. A.-A.F Tavassoli, A Alamo, L Bedel, L Forest, J.-M Gentzbittel, J.-W Rensman, E Diegele, R Lindau, M Schirra, R Schmitt, H.C Schneider, C Petersen, A.-M Lancha, P Fernandez, G Filacchioni, M.F Maday, K Mergia, N Boukos, Baluc, P Spätig, E Alves, E Lucon, J. Nucl. Mater. 329–333, 257 (2004)

  22. T. Ishii, K. Fukaya, Y. Nishiyama, M. Suzuki, M. Eto, J. Nucl. Mater. 258–263, 1183 (1998)

    Article  Google Scholar 

  23. Y.B. Chun, S.H. Kang, S. Noh, T.K. Kim, D.W. Lee, S. Cho, Y.H. Jeong, J. Nucl. Mater. 455, 212 (2014)

    Article  CAS  Google Scholar 

  24. ASTM E606-04, Standard practice for strain-controlled fatigue testing (ASTM International, West Conshohocken, 2004)

  25. ASTM E606–92, Standard recommended practice for constant-amplitude low-cycle fatigue testing (ASTM International, West Conshohocken, 1994)

  26. B.F. Langer, J. Basic Eng. 84, 389 (1962)

    Article  Google Scholar 

  27. L.F. Coffin, Trans. ASME 76, 931 (1954)

    CAS  Google Scholar 

  28. S.S. Manson, Exp. Mech. 5, 193 (1965)

    Article  Google Scholar 

  29. J.F. Tavernelli, L.F. Coffin Jr., J. Basic Eng. 84, 533 (1962)

    Article  Google Scholar 

  30. O.H. Basquin, Am. Soc. Test. Mater. 10, 625 (1910)

    Google Scholar 

  31. D. De Meis, RCC-MRx design code for nuclear components, Technical Report, RT/2015/28/ENEA (ENEA, Rome, 2015)

  32. T. Hirose, T. Kato, H. Sakasegawa, H. Tanigawa, T. Nozawa, Fusion Eng. Des. 160, 111823 (2020)

    Article  CAS  Google Scholar 

  33. M.F. Giordana, I. Alvarez-Armas, M. Sauzay, A.F. Armas, Key Eng. Mater. 465, 358 (2011)

    Article  CAS  Google Scholar 

  34. D.M. Li, K.W. Kim, C.S. Lee, Int. J. Fatigue 19, 607 (1997)

    Article  CAS  Google Scholar 

  35. V. Shankar, M. Valsan, K.B.S. Rao, R. Kannan, S.L. Manan, S.D. Pathak, Mater. Sci. Eng. A 437, 413 (2006)

    Article  Google Scholar 

  36. A.F. Armas, C. Petersen, R. Schmitt, M. Avalos, I. Alvarez-Armas, J. Nucl. Mater. 307–311, 509 (2002)

    Article  Google Scholar 

  37. R.A. Hecht, J.R. Weertman, Metall. Mater. Trans. A 29, 2137 (1998)

    Article  Google Scholar 

  38. J.E. King, Mater. Sci. Technol. 6, 19 (1990)

    Article  CAS  Google Scholar 

  39. D.S. Wood, A.B. Baldwin, Metal Eng. Tech. 16, 439 (1984)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) [2019M1A7A1A0209072912]; and the National Fusion Research Institute (NFRI) (NFRI-IN1603).

Funding

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Young-Bum Chun or Yong-Jun Oh.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised due to missing abstract section and it has been updated.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahiale, G.K., Choi, WD., Cho, S. et al. Low-Cycle Fatigue Behavior of Reduced Activation Ferritic-Martensitic Steel at Elevated Temperatures. Met. Mater. Int. 29, 71–80 (2023). https://doi.org/10.1007/s12540-022-01209-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-022-01209-5

Keywords

Navigation