Skip to main content
Log in

Influence of Graphene Oxide Nanoplates on Strengthening Mechanism of Al6061-GO Nanocomposites

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

In this paper, the effect of graphene oxide (GO) nanoplates on the strengthening mechanism of Al6061-GO nanocomposites have been investigated. To make composite samples, GO nanosheets with various weight percents of 0.0, 0.2, 0.5, and 0.8% were added to the molten Al6061 through the stir casting method. Then the cast composite slabs were hot rolled. Tensile test was used to study the mechanical properties of composite specimens. The experimental results showed that the nanoplates of GO have strong strengthening effects along with increase in ductility in the fabricated composites. To model the strengthening effect of GO in Al6061 matrix, the modified shear-lag and the modified Zhang-Chen strengthening mechanisms have been utilized. Comparisons between the model predictions and the experimental results revealed that both models can satisfactorily predict the yield strength of fabricated nanocomposites.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

b :

Burgers vector

d :

Minimum spacing of reinforcement (nm)

\(d_{p}\) :

Particle size (nm)

E f :

Young’s modulus of reinforcement (GPa)

f 1, f d, f orowan :

Strength improvement factors

\(f_{porosity}\) :

Contribution factor of porosity

G m :

Shear modulus of the matrix (GPa)

g :

Geometry factor

I D , I G :

D and G peak band intensity (cm1)

l, w, t :

Length, width and thickness of reinforcement (nm)

\(l_{c}\) :

Critical length of reinforcement (nm)

M :

Taylor factor

N :

Total number of reinforcement

N x , N y , N z :

Number of reinforcement in principal directions

\(n\) :

Shear-lag fitting parameter

P :

Empirical constant

\(r\) :

Particle radius (nm)

S :

Interfacial area (nm2)

s :

Aspect ratio

\(T_{process} ,T_{test}\) :

Production and ambient temperature (°C)

\(v_{p}\) , \(v_{m}\) :

Volume fraction of reinforcement and matrix

V 1GO :

Volume per reinforcement

V :

Volume of the composites

α :

Empirical constant

\(\alpha_{m} ,\alpha_{p}\) :

Thermal expansion coefficients of matrix and reinforcement (°C1)

\(\eta_{0}\) :

Krenchel orientation factor

\(\eta_{1}\) :

Length distribution factor

\(\Theta\) :

Strain hardening rate (MPa)

\(\lambda\) :

The gap between the reinforcement particles (nm)

\(\rho_{GO}\) :

GO density (g/cm3)

\(\rho_{CTE}\) :

Dislocation density (m2)

\(\sigma_{my}\) :

Yield strength of matrix (MPa)

\(\sigma_{pmax}\) :

Maximum normal stress of reinforcement (MPa)

\(\overline{\sigma }_{p}\) :

Mean value of normal stress on the reinforcement (MPa)

\(\tau_{m}\) :

Shear stress of matrix (MPa

MMCs:

Metal matrix composites

AMCs:

Aluminum matrix composites

GNPs:

Graphene nanoplates

GO:

Graphene oxide

CNTs:

Carbon nanotubes

UTS:

Ultimate tensile strength (MPa)

SPD:

Severe plastic deformation

SEM:

Scanning electron microscopy

XRD:

X-ray diffraction

SSA:

Specific surface area of reinforcement (m2/g)

References

  1. L. Zhao, Q. Guo, Y. Shi, Y. Liu, S. Osovski, Z. Li, D.B. Xiong, Y. Su, D. Zhang, Metall. Mater. Trans. A 50, 1113–1118 (2019). https://doi.org/10.1007/s11661-018-05108-6

  2. J. Liu, N. Hu, X. Liu, Y. Liu, X. Lv, L. Wei, S. Zheng, Nanoscale Res. Lett. 14, 114 (2019). https://doi.org/10.1186/s11671-019-2951-9

    Article  CAS  Google Scholar 

  3. A. Yazdani, E. Salahinejad, Mater. Des. 32, 3137–3142 (2011). https://doi.org/10.1016/J.MATDES.2011.02.063

    Article  CAS  Google Scholar 

  4. M.P. De Cicco, X. Li, L.-S. Turng, J. Mater. Process. Technol. 209, 5881–5885 (2009). https://doi.org/10.1016/J.JMATPROTEC.2009.07.001

    Article  Google Scholar 

  5. L. Jiang, Z. Li, G. Fan, L. Cao, D. Zhang, Scr. Mater. 66, 331–334 (2012). https://doi.org/10.1016/j.scriptamat.2011.11.023

    Article  CAS  Google Scholar 

  6. Y. Kim, J. Lee, M.S. Yeom, J.W. Shin, H. Kim, Y. Cui, J.W. Kysar, J. Hone, Y. Jung, S. Jeon, S.M. Han, Nat. Commun. 4, 2114 (2013). https://doi.org/10.1038/ncomms3114

    Article  CAS  Google Scholar 

  7. Z.W. Zhang, Z.Y. Liu, B.L. Xiao, D.R. Ni, Z.Y. Ma, Carbon N. Y. 135, 215–223 (2018). https://doi.org/10.1016/j.carbon.2018.04.029

    Article  CAS  Google Scholar 

  8. Z. Li, Q. Guo, Z. Li, G. Fan, D.B. Xiong, Y. Su, J. Zhang, D. Zhang, Nano Lett. 15, 8077–8083 (2015). https://doi.org/10.1021/acs.nanolett.5b03492

    Article  CAS  Google Scholar 

  9. S.K. Soni, D. Ganatra, P. Mendiratta, C.S.K.A. Reddy, B. Thomas, Met. Mater. Int. 28, 545–555 (2022). https://doi.org/10.1007/S12540-021-01103-6

  10. R.J. Young, I.A. Kinloch, L. Gong, K.S. Novoselov, Compos. Sci. Technol. 72, 1459–1476 (2012). https://doi.org/10.1016/J.COMPSCITECH.2012.05.005

    Article  CAS  Google Scholar 

  11. J. Liu, U. Khan, J. Coleman, B. Fernandez, P. Rodriguez, S. Naher, D. Brabazon, Mater. Des. 94, 87–94 (2016). https://doi.org/10.1016/j.matdes.2016.01.031

    Article  CAS  Google Scholar 

  12. H.G. Prashantha Kumar, M. Anthony Xavior, Procedia Eng. 97, 1033–1040 (2014). https://doi.org/10.1016/j.proeng.2014.12.381

    Article  CAS  Google Scholar 

  13. Y.M. Guo, D.Q. Yi, H.Q. Liu, B. Wang, B. Jiang, H.S. Wang, J. Mater. Sci. (2019). https://doi.org/10.1007/s10853-019-04017-2

    Article  Google Scholar 

  14. Z. Li, G. Fan, Q. Guo, Z. Li, Y. Su, D. Zhang, Carbon N. Y. 95, 419–427 (2015). https://doi.org/10.1016/j.carbon.2015.08.014

    Article  CAS  Google Scholar 

  15. X. Du, W. Du, Z. Wang, K. Liu, S. Li, Mater. Sci. Eng. A 711, 633–642 (2018). https://doi.org/10.1016/j.msea.2017.11.040

    Article  CAS  Google Scholar 

  16. S.F. Bartolucci, J. Paras, M.A. Rafiee, J. Rafiee, S. Lee, D. Kapoor, N. Koratkar, Mater. Sci. Eng. A 528, 7933–7937 (2011). https://doi.org/10.1016/j.msea.2011.07.043

    Article  CAS  Google Scholar 

  17. J. Wang, Z. Li, G. Fan, H. Pan, Z. Chen, D. Zhang, Scr. Mater. 66, 594–597 (2012). https://doi.org/10.1016/j.scriptamat.2012.01.012

    Article  CAS  Google Scholar 

  18. M. Bastwros, G.-Y. Kim, C. Zhu, K. Zhang, S. Wang, X. Tang, X. Wang, Compos. Part B Eng. 60, 111–118 (2014). https://doi.org/10.1016/J.COMPOSITESB.2013.12.043

    Article  CAS  Google Scholar 

  19. D. Li, Y. Ye, X. Liao, Q.H. Qin, Nano Res. 11, 1642–1650 (2018). https://doi.org/10.1007/s12274-017-1779-9

    Article  CAS  Google Scholar 

  20. S.J. Yan, S.L. Dai, X.Y. Zhang, C. Yang, Q.H. Hong, J.Z. Chen, Z.M. Lin, Mater. Sci. Eng. A 612, 440–444 (2014). https://doi.org/10.1016/j.msea.2014.06.077

    Article  CAS  Google Scholar 

  21. M. Li, H. Che, X. Liu, S. Liang, H. Xie, J. Mater. Sci. 49, 3725–3731 (2014). https://doi.org/10.1007/s10853-014-8082-x

    Article  CAS  Google Scholar 

  22. M. Khademian, A. Alizadeh, A. Abdollahi, Trans. Indian Inst. Met. 70, 1635–1646 (2017). https://doi.org/10.1007/s12666-016-0962-0

    Article  CAS  Google Scholar 

  23. S.K. Thandalam, S. Ramanathan, S. Sundarrajan, J. Mater. Res. Technol. 4, 333–347 (2015). https://doi.org/10.1016/J.JMRT.2015.03.003

    Article  CAS  Google Scholar 

  24. J.H. Shin, H.J. Choi, D.H. Bae, Mater. Sci. Eng. A 578, 80–89 (2013). https://doi.org/10.1016/J.MSEA.2013.04.069

    Article  CAS  Google Scholar 

  25. A.M. El-Sabbagh, M. Soliman, M.A. Taha, H. Palkowski, J. Mater. Process. Technol. 213, 1669–1681 (2013). https://doi.org/10.1016/J.JMATPROTEC.2013.04.013

    Article  CAS  Google Scholar 

  26. F. Ferreira, I. Ferreira, E. Camacho, F. Lopes, A.C. Marques, A. Velhinho, Compos. Part B Eng. 164, 265–271 (2019). https://doi.org/10.1016/j.compositesb.2018.11.075

    Article  CAS  Google Scholar 

  27. M. Rashad, F. Pan, A. Tang, M. Asif, Prog. Nat. Sci. Mater. Int. 24, 101–108 (2014). https://doi.org/10.1016/J.PNSC.2014.03.012

    Article  CAS  Google Scholar 

  28. S.E. Shin, H.J. Choi, J.H. Shin, D.H. Bae, Carbon N. Y. 82, 143–151 (2015). https://doi.org/10.1016/J.CARBON.2014.10.044

    Article  CAS  Google Scholar 

  29. J.L. Li, Y.C. Xiong, X.D. Wang, S.J. Yan, C. Yang, W.W. He, J.Z. Chen, S.Q. Wang, X.Y. Zhang, S.L. Dai, Mater. Sci. Eng. A 626, 400–405 (2015). https://doi.org/10.1016/j.msea.2014.12.102

    Article  CAS  Google Scholar 

  30. Y.M. Guo, D.Q. Yi, H.Q. Liu, B. Wang, B. Jiang, H.S. Wang, J. Mater. Sci. 55, 3314–3328 (2020). https://doi.org/10.1007/s10853-019-04017-2

    Article  CAS  Google Scholar 

  31. M. Hedayatian, K. Vahedi, A. Nezamabadi, A. Momeni, Met. Mater. Int. 26, 760–772 (2020). https://doi.org/10.1007/s12540-019-00361-9

  32. M. Hedayatian, A. Momeni, A. Nezamabadi, K. Vahedi, Compos. Part B Eng. 182, 107652 (2020). https://doi.org/10.1016/J.COMPOSITESB.2019.107652

    Article  CAS  Google Scholar 

  33. N.I. Zaaba, K.L. Foo, U. Hashim, S.J. Tan, W.W. Liu, C.H. Voon, Procedia Eng. 184, 469–477 (2017). https://doi.org/10.1016/J.PROENG.2017.04.118

    Article  CAS  Google Scholar 

  34. B.L. Dasari, M. Morshed, J.M. Nouri, D. Brabazon, S. Naher, Compos. Part B Eng. 145, 136–144 (2018). https://doi.org/10.1016/j.compositesb.2018.03.022

    Article  CAS  Google Scholar 

  35. B. Xiong, K. Liu, W. Xiong, X. Wu, J. Sun, J. Alloys Compd. 845, 156282 (2020). https://doi.org/10.1016/J.JALLCOM.2020.156282

    Article  CAS  Google Scholar 

  36. J. Liao, I. Sridhar, Mater. Des. 31, S96–S100 (2010). https://doi.org/10.1016/J.MATDES.2009.10.022

    Article  CAS  Google Scholar 

  37. Y. Jiang, R. Xu, Z. Tan, G. Ji, G. Fan, Z. Li, D.B. Xiong, Q. Guo, Z. Li, D. Zhang, Carbon N. Y. 146, 17–27 (2019). https://doi.org/10.1016/j.carbon.2019.01.094

    Article  CAS  Google Scholar 

  38. Z. Li, H. Wang, Q. Guo, Z. Li, D.B. Xiong, Y. Su, H. Gao, X. Li, D. Zhang, Nano Lett. 18, 6255–6264 (2018)

    Article  CAS  Google Scholar 

  39. H.R. Ezatpour, M.T. Parizi, G.R. Ebrahimi, Arch. Civ. Mech. Eng. (2021). https://doi.org/10.1007/S43452-021-00210-W

    Article  Google Scholar 

  40. M.C. Şenel, M. Gürbüz, Met. Mater. Int. 27, 2438–2449 (2020). https://doi.org/10.1007/S12540-019-00592-W

    Article  Google Scholar 

  41. V.C. Nardone, K.M. Prewo, Scr. Metall. 20, 43–48 (1986). https://doi.org/10.1016/0036-9748(86)90210-3

    Article  CAS  Google Scholar 

  42. A. Kelly, W.R. Tyson, J. Mech. Phys. Solids 13, 329–350 (1965). https://doi.org/10.1016/0022-5096(65)90035-9

    Article  CAS  Google Scholar 

  43. W. Zhou, Y. Fan, X. Feng, K. Kikuchi, N. Nomura, A. Kawasaki, Compos. Part A Appl. Sci. Manuf. 112, 168–177 (2018). https://doi.org/10.1016/j.compositesa.2018.06.008

    Article  CAS  Google Scholar 

  44. H. Krenchel, Publ. 1964 Copenhagen by Akad. Forl. (1964)

  45. L. Gong, I.A. Kinloch, R.J. Young, I. Riaz, R. Jalil, K.S. Novoselov, Adv. Mater. 22, 2694–2697 (2010). https://doi.org/10.1002/adma.200904264

    Article  CAS  Google Scholar 

  46. H.J. Choi, J.H. Shin, D.H. Bae, Compos. Sci. Technol. 71, 1699–1705 (2011). https://doi.org/10.1016/j.compscitech.2011.07.013

    Article  CAS  Google Scholar 

  47. X. Gao, H. Yue, E. Guo, H. Zhang, X. Lin, L. Yao, B. Wang, Mater. Des. 94, 54–60 (2016). https://doi.org/10.1016/J.MATDES.2016.01.034

    Article  CAS  Google Scholar 

  48. J. Li, X. Zhang, L. Geng, Mater. Des. 144, 159–168 (2018). https://doi.org/10.1016/J.MATDES.2018.02.024

    Article  CAS  Google Scholar 

  49. Z. Zhang, D.L. Chen, Scr. Mater. 54, 1321–1326 (2006). https://doi.org/10.1016/J.SCRIPTAMAT.2005.12.017

    Article  CAS  Google Scholar 

  50. Q. Zhang, D.L. Chen, Scr. Mater. 51, 863–867 (2004). https://doi.org/10.1016/J.SCRIPTAMAT.2004.07.006

    Article  CAS  Google Scholar 

  51. Y.C. Lin, W.-Y. Dong, M. Zhou, D.-X. Wen, D.-D. Chen, Mater. Sci. Eng. A 718, 165–172 (2018). https://doi.org/10.1016/J.MSEA.2018.01.109

    Article  CAS  Google Scholar 

  52. M. Taya, R.J. Arsenault, Metal Matrix Composites: Thermomechanical Behavior (Elsevier Science, Amsterdam, 1989)

    Google Scholar 

  53. F.A. Mirza, D.L. Chen, Nanosci. Nanotechnol. Lett. 4, 794–800 (2012). https://doi.org/10.1166/nnl.2012.1394

    Article  CAS  Google Scholar 

  54. G.W. Brassell, J.A. Horak, B.L. Butler, J. Compos. Mater. 9, 288–296 (1975). https://doi.org/10.1177/002199837500900307

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahdi Hedayatian.

Ethics declarations

Conflict of interest

No potential conflict of interest was reported by the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hedayatian, M., Momeni, A. Influence of Graphene Oxide Nanoplates on Strengthening Mechanism of Al6061-GO Nanocomposites. Met. Mater. Int. 29, 247–257 (2023). https://doi.org/10.1007/s12540-022-01208-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-022-01208-6

Keywords

Navigation