Skip to main content
Log in

Novel Strategy for Reducing Residual Stress in Titanium Alloy Parts Obtained via Additive Manufacturing

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

The additive manufacturing of titanium alloy parts has important scientific significance and practical value. Controlling the distribution of residual stress caused by the high cooling rate and temperature gradient is the key to regulating the performance of devices obtained from additive manufacturing. In this work, the effects of the interlayer scanning angle on the residual stress in Ti–6Al–4V parts manufactured by selective laser melting were investigated by finite element simulations. We studied how changing the interlayer deflection angle alleviated residual stress under different energy inputs. The results showed that the residual stress in the z-direction was reduced by the deflection angle of 67° and 90°, and the non-uniform distribution of residual stress was reduced by a deflection angle of 67°. The combination of a chessboard pattern and interlayer deflection angle greatly alleviated the generation of residual stress. This work has important guiding significance for the additive manufacturing design of high-quality and high-performance titanium alloy devices.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. F. Bartolomeu, S. Faria, O. Carvalho, E. Pinto, N. Alves, F.S. Silva, G. Miranda, Mater. Sci. Eng. A 663, 181 (2016). https://doi.org/10.1016/j.msea.2016.03.113

    Article  CAS  Google Scholar 

  2. A.T. Erturk, M.E. Bulduk, G. Tarakçi, G. Özer, E. Yarar,  Met. Mater. Int. 28, 155 (2022). https://doi.org/10.1007/s12540-021-01038-y

    Article  CAS  Google Scholar 

  3. M.D. Barath Kumar, M. Manikandan, Metals Mater. Int. 28, 54 (2022). https://doi.org/10.1007/s12540-021-01015-5

    Article  Google Scholar 

  4. J.-B. Lee, D.-I. Seo, H.-Y. Chang, Met. Mater. Int. 27, 3095 (2021). https://doi.org/10.1007/s12540-021-01085-5

    Article  Google Scholar 

  5. A. Das, M. Shukla, Met. Mater. Int. 27, 2461 (2021). https://doi.org/10.1007/s12540-020-00646-4

    Article  CAS  Google Scholar 

  6. G. Li, L. Wang, W. Pan, F. Yang, W. Jiang, X. Wu, X. Kong, K. Dai, Y. Hao , Sci. Rep. 6, 34072 (2016). https://doi.org/10.1038/srep34072

    Article  CAS  Google Scholar 

  7. Y. Zheng, Q. Han, D. Li, F. Sheng, Z. Song, J. Wang, Mater. Design 197, 109219 (2020). https://doi.org/10.1016/j.matdes.2020.109219

    Article  CAS  Google Scholar 

  8. D. Gu, Y.-C. Hagedorn, W. Meiners, G. Meng, R.J.S. Batista, K. Wissenbach, R. Poprawe, Acta Mater. 60, 3849 (2012). https://doi.org/10.1016/j.actamat.2012.04.006

    Article  CAS  Google Scholar 

  9. P. Mercelis, J.P. Kruth, Rapid Prototyping J. 12, 254 (2006). https://doi.org/10.1108/13552540610707013

    Article  Google Scholar 

  10. L. Parry, I.A. Ashcroft, R.D. Wildman, Addit. Manuf. 12, 1 (2016). https://doi.org/10.1016/j.addma.2016.05.014

    Article  Google Scholar 

  11. G. Vastola, G. Zhang, Q.X. Pei , Y.-W. Zhang, Addit. Manuf. 12, 231 (2016). https://doi.org/10.1016/j.addma.2016.05.010

    Article  CAS  Google Scholar 

  12. G.M. Karthik, H.S. Kim, Met. Mater. Int. 27, 1 (2021). https://doi.org/10.1007/s12540-020-00931-2

    Article  CAS  Google Scholar 

  13. S. Lee, J. Kim, J. Choe, S.-W. Kim, J.-K. Hong, Yoon Suk Choi, Met. Mater. Int. 27, 78 (2021). https://doi.org/10.1007/s12540-020-00770-1

    Article  CAS  Google Scholar 

  14. H. Galarraga, D.A. Lados, R.R. Dehoff, M.M. Kirka, P. Nandwana, Addit. Manuf. 10, 47 (2016). https://doi.org/10.1016/j.addma.2016.02.003

    Article  CAS  Google Scholar 

  15. A.M. Jonaet, H.S. Park, C.M. Lee, Int. J. Adv. Manuf. Technol. 113, 2227 (2021). https://doi.org/10.1007/s00170-021-06711-5

    Article  Google Scholar 

  16. K. Guan, Z. Wang, M. Gao, X. Li, X. Zeng, Mater. Design 50, 581 (2013). https://doi.org/10.1016/j.matdes.2013.03.056

    Article  CAS  Google Scholar 

  17. Y.M Zou, Y.S. Wu, K.F Li, C.L. Tan, Z.G. Qiu, D.C. Zeng, Mater. Lett. 272, 127824 (2020). https://doi.org/10.1016/j.matlet.2020.127824

    Article  CAS  Google Scholar 

  18. I. Yadroitsev, A. Gusarov, I. Yadroitsava, I. Smurov, J. Mater. Process. Tech. 210, 1624 (2010). https://doi.org/10.1016/j.jmatprotec.2010.05.010

    Article  CAS  Google Scholar 

  19. W. Yan, Y. Qian, W. Ge, S. Lin, W.K. Liu, F. Lin, G.J. Wagner, Mater. Design 141, 210 (2018). https://doi.org/10.1016/j.matdes.2017.12.031

    Article  Google Scholar 

  20. Y. Lian, Z. Gan, C. Yu, D. Kats, W.K. Liu, G.J. Wagner, Mater. Design 169, 107672 (2019). https://doi.org/10.1016/j.matdes.2019.107672

    Article  CAS  Google Scholar 

  21. M. Labudovic, D. Hu, R. Kovacevic, J. Mater. Sci. 38, 35 (2003). https://doi.org/10.1023/A:1021153513925

    Article  CAS  Google Scholar 

  22. H.G. Li, T.L. Lee, W. Zheng, Y.Z. Lu, H.B.C. Yin, J.X. Yang, Y.J. Huang, J.F. Sun, Mater. Lett. 263, 127247 (2020). https://doi.org/10.1016/j.matlet.2019.127247

    Article  CAS  Google Scholar 

  23. J. Cao, M.A. Gharghouri, P. Nash, J. Mater. Process. Tech. 237, 409 (2016). https://doi.org/10.1016/j.jmatprotec.2016.06.032

    Article  CAS  Google Scholar 

  24. Q. Liu, Y. Danlos, B. Song, B. Zhang, S. Yin, H. Liao, J. Mater. Process. Tech. 222, 61 (2015). https://doi.org/10.1016/j.jmatprotec.2015.02.036

    Article  CAS  Google Scholar 

  25. H. Ali, H. Ghadbeigi, K. Mumtaz, Mater. Sci. Eng. A 712, 175 (2018). https://doi.org/10.1016/j.msea.2017.11.103

    Article  CAS  Google Scholar 

  26. W. Zhang, M. Tong, N.M. Harrison, Addit. Manuf. 36, 101507 (2020). https://doi.org/10.1016/j.addma.2020.101507

    Article  CAS  Google Scholar 

  27. V. Manvatkar, A. De, T. Debroy, Mater. Sci. Technol. 31, 924 (2015). https://doi.org/10.1179/1743284714Y.0000000701

    Article  CAS  Google Scholar 

  28. A.V. Gusarov, J.-P. Kruth, Int. J. Heat Mass Trans. 48, 3423 (2005). https://doi.org/10.1016/j.ijheatmasstransfer.2005.01.044

    Article  CAS  Google Scholar 

  29. W. Huang, Y. Zhang, J. Manuf. Process. 42, 139 (2019). https://doi.org/10.1016/j.jmapro.2019.04.019

    Article  Google Scholar 

  30. F. Verhaeghe, T. Craeghs, J. Heulens, L. Pandelaers, Acta Mater. 57, 6006 (2009). https://doi.org/10.1016/j.actamat.2009.08.027

    Article  CAS  Google Scholar 

  31. A. Hussein, L. Hao, C. Yan, R. Everson, Mater. Design 52, 638 (2013). https://doi.org/10.1016/j.matdes.2013.05.070

    Article  CAS  Google Scholar 

  32. W. Ya, B. Pathiraj, S. Liu, J. Mater. Process. Tech. 230, 217 (2016). https://doi.org/10.1016/j.jmatprotec.2015.11.012

    Article  CAS  Google Scholar 

  33. C. Chen, J. Yin, H. Zhu, Z. Xiao, L. Zhang, X. Zeng, Int. J. Mach. Tools Manuf 145, 103433 (2019). https://doi.org/10.1016/j.ijmachtools.2019.103433

    Article  Google Scholar 

  34. I. Yadroitsev, I. Yadroitsava, Virtual Phys. Prototyp. 10, 67 (2015). https://doi.org/10.1080/17452759.2015.1026045

    Article  Google Scholar 

  35. J. Xu, Y. Ding, Y. Gao, H. Wang, Y. Hu, D. Zhang, Mater. Design 209, 109940 (2021). https://doi.org/10.1016/j.matdes.2021.109940

    Article  CAS  Google Scholar 

  36. Y. Lu, S. Wu, Y. Gan, T. Huang, C. Yang, L. Junjie, J. Lin, Opt. Laser Technol. 75, 197 (2015). https://doi.org/10.1016/j.optlastec.2015.07.009

    Article  CAS  Google Scholar 

  37. T. Mukherjee, W. Zhang, T. DebRoy, Comput. Mater. Sci. 126, 360 (2017). https://doi.org/10.1016/j.commatsci.2016.10.003

    Article  CAS  Google Scholar 

  38. Y. Li, K. Zhou, P. Tan, S.B. Tor, C.K. Chua, K.F. Leong, Int. J. Mech. Sci. 136, 24 (2018). https://doi.org/10.1016/j.ijmecsci.2017.12.001

    Article  Google Scholar 

  39. E. Macherauch, in Application of Fracture Mechanics to Materials and Structures, ed. by G.C. Sih, E. Sommer, W. Dahl (Martinus Nijhoff Publishers, Hague, 1984), pp. 157–192

  40. P. Tan, F. Shen, B. Li, K. Zhou, Mater. Design 168, 107642 (2019). https://doi.org/10.1016/j.matdes.2019.107642

    Article  CAS  Google Scholar 

  41. J. Ahn, E. He, L. Chen, R.C. Wimpory, J.P. Dear, C.M. Davies, Mater. Design 115, 441 (2017). https://doi.org/10.1016/j.matdes.2016.11.078

    Article  CAS  Google Scholar 

  42. Z. Zheng, X. Jin, Y. Bai, Y. Yang, C. Ni, W.F. Lu, H. Wang, Mater. Sci. Eng. A 831, 142236 (2022). https://doi.org/10.1016/j.msea.2021.142236

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 52171165) and the Natural Science Foundation of Jiangsu Province (BK20191338).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yucheng Zhao, Weiming Yang or Haishun Liu.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, X., Zhao, Y., Yang, W. et al. Novel Strategy for Reducing Residual Stress in Titanium Alloy Parts Obtained via Additive Manufacturing. Met. Mater. Int. 28, 3057–3067 (2022). https://doi.org/10.1007/s12540-022-01179-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-022-01179-8

Keywords

Navigation