Skip to main content
Log in

Numerical Investigation on Gas Bubbling Assisted Inclusion Transport and Removal in Multistrand Tundish

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

In continuous casting, the molten metal quality in the mold is affected by flow pattern, temperature distribution and inclusion transport in the multistrand tundish. Natural convection due to thermal buoyancy directly influences these parameters and with gas bubbling, further improvisation can be made. In the present work, numerical investigation of the effect of thermal buoyancy is carried out to examine the flow field, temperature distribution and inclusion trajectories. Further, gas bubbling curtain modeling using the Euler-Euler approach is performed for the different locations on the bottom wall of the tundish and quantitative analysis of tundish performance is presented using residence time distribution (RTD) curves. The results show that big circulation loop generated due to thermal buoyancy assists in inclusion removal and mixing at each outlet. Gas bubbling increases the molten metal flow velocity in the central region of tundish, leading to a decrease in the dimensionless number Gr/Re2 near the outlets which are far away from the inlet of the tundish i.e. outlet 2 and outlet 3. Hence, the dominance of natural convection decreases. The inclusion removal rate is found to increase significantly as the circulation loop formed at each side of the curtain forces them upward direction. However, the reported inclusion removal rate in gas bubbling cases is found to be independent of particle size and curtain location.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Abbreviations

g:

Gravitational acceleration

t:

Time

k :

Turbulent kinetic energy

ε :

Rate of dissipation of turbulent kinetic energy

p :

Pressure

\(F_{D}\) :

Drag force

\(C_{D}\) :

Drag coefficient

T :

Temperature

d :

Diameter

R :

Nozzle radius

u :

Flow velocity

K :

Interphase momentum exchange coefficient

h :

Enthalpy

τ :

Relaxation time

µ :

Viscosity

i :

Direction coordinate

p:

Inclusion particle

b:

Gas bubble

in :

Inlet

eff. :

Effective

N :

Nozzle

l :

Liquid phase

g :

Gas phase

References

  1. S. Lopez-Ramirez, R.D. Morales, J.A.R. Serrano, Numer. Heat Tr. A-Appl. 37, 69 (2000)

    Article  CAS  Google Scholar 

  2. D.Y. Sheng, C.-S. Kim, J.-K. Yoon, T.-C. Hsiao, ISIJ Int. 38, 843 (1998)

    Article  Google Scholar 

  3. D.Y. Sheng, L. Jonsson, Metall. Mater. Trans. B 31, 867 (2000)

    Article  Google Scholar 

  4. H. Tozawa, Y. Kato, K. Sorimachi, T. Nakanishi, ISIJ Int. 39, 426 (1999)

    Article  CAS  Google Scholar 

  5. J. Palafox-Ramos, J. De, S. López-Ramírez, R.D. Morales, Ironmak. Steelmak. 28, 101 (2001)

    Article  CAS  Google Scholar 

  6. L. Zhang, Steel Res. Int. 76, 784 (2005)

    Article  CAS  Google Scholar 

  7. P.K. Jha, P.S. Rao, A. Dewan, ISIJ Int. 48, 154 (2008)

    Article  Google Scholar 

  8. Q. Yuan, B.G. Thomas, S.P. Vanka, Metall. Mater. Trans. B 35, 685 (2004)

    Article  Google Scholar 

  9. Y. Miki, B.G. Thomas, Metall. Mater. Trans. B 30, 639 (1999)

    Article  Google Scholar 

  10. A. Ramos-Banderas, R.D. Morales, J.D.J. Barreto, G. Solorio-Diaz, Steel Res. Int. 77, 325 (2006)

    Article  CAS  Google Scholar 

  11. M. Warzecha, T. Merder, P. Warzecha, G. Stradomski, ISIJ Int. 53, 1983 (2013)

    Article  CAS  Google Scholar 

  12. A. Rückert, M. Warzecha, R. Koitzsch, M. Pawlik, H. Pfeifer, Steel Res. Int. 80, 568 (2009)

    Article  CAS  Google Scholar 

  13. A. Cwudziński, Steel Res. Int. 88, 1600484 (2017)

    Article  CAS  Google Scholar 

  14. S. Chang, L. Zhong, Z. Zou, ISIJ Int. 55, 837 (2015)

    Article  CAS  Google Scholar 

  15. ANSYS, Inc, Ansys® Academic Research Mechanical, Release Fluent 2019R2 (2019), https://www.ansys.com/products/fluids/ansys-fluent. Accessed 15 March 2021

  16. ANSYS, Inc, Ansys® Academic Research Mechanical, Release ICEMCFD 2019R2 (2019), https://www.ansys.com/products/meshing. Accessed 15 March 2021

  17. M.W. Reeks, On the dispersion of small particles suspended in an isotropic turbulent fluid. J. Fluid Mech. 83, 529 (1977)

    Article  Google Scholar 

  18. C.T. Crowe, J.D. Schwarzkopf, M. Sommerfeld, Y. Tsuji, Multiphase Flows with Droplets and Particles, 2nd Edn. (CRC Press, Boca Raton, 2011)

    Article  Google Scholar 

  19. A. Ramos-Banderas, R.D. Morales, L. García-Demedices, M. Díaz-Cruz, ISIJ Int. 43, 653 (2003)

    Google Scholar 

  20. R. Clift, J.R. Grace, M.E. Weber, Bubbles, Drops, and Particles (Dover Publications, Mineola, 1978)

    Article  Google Scholar 

  21. L. Neves, R.P. Tavares, Analysis of the mathematical model of the gas bubbling curtain injection on the bottom and the walls of a continuous casting tundish. Ironmak. Steelmak. 44, 559 (2017)

    Article  CAS  Google Scholar 

  22. L. Shiller, A. Naumann, Z. Ver. Dtsch. Ing. 77, 318 (1935)

    Google Scholar 

  23. B.E. Launder, D.B. Spalding, Comput. Method. Appl. M. 3, 269 (1974)

    Article  Google Scholar 

  24. ANSYS, Inc, ANSYS Fluent 2019R2 theory guide (2019), https://ansyshelp.ansys.com. Accessed 15 March 2021

  25. A.A. Troshko, Y.A. Hassan, Int. J. Multiphas. Flow 27, 1965 (2001)

    Article  CAS  Google Scholar 

  26. A.D. Gosman, E. Ioannides, J. Energy 7, 482 (1983)

    Article  Google Scholar 

  27. S.A. Morsi, A.J. Alexander, J. Fluid Mech. 55, 193 (1972)

    Article  Google Scholar 

  28. C. Pfeiler, M. Wu, A. Ludwig, Mater. Sci. Eng. A 413–414, 115 (2005)

    Article  CAS  Google Scholar 

  29. P.G. Saffman, J. Fluid Mech. 22, 385 (1965)

    Article  Google Scholar 

  30. A. Li, G. Ahmadi, Aerosol. Sci. Tech. 16, 209 (1992)

    Article  Google Scholar 

  31. L. Zhang, Y. Wang, JOM 64, 1063 (2012)

    Article  CAS  Google Scholar 

  32. O.J. Ilegbusi, J. Szekely, Steel Res. 59, 399 (1988)

    Article  CAS  Google Scholar 

  33. J. Szekely, O.J. Ilegbusi, The Physical and Mathematical Modeling of Tundish Operations (Springer-Verlag, Berlin, New York 1989)

    Google Scholar 

  34. S. Chakraborty, Y. Sahai, ISIJ Int. 31, 960 (1991)

    Article  Google Scholar 

  35. R.D. Morales, S. Lopez-Ramirez, J. Palafox-Ramos, D. Zacharias, ISIJ Int. 39, 455 (1999)

    Article  CAS  Google Scholar 

  36. M. Thumfart, A. Pelss, H. Pfeifer, Steel Res. Int. 90, 1800639 (2019)

    Article  CAS  Google Scholar 

  37. S. Singh, S.C. Koria, ISIJ Int. 33, 1228 (1993)

    Article  Google Scholar 

  38. K. Raghavendra, S. Sarkar, S.K. Ajmani, M.B. Denys, M.K. Singh, Appl. Math. Model. 37, 6284 (2013)

    Article  Google Scholar 

  39. A.K. Sinha, Y. Sahai, ISIJ Int. 33, 556 (1993)

    Article  CAS  Google Scholar 

  40. P.K. Jha, S.K. Dash, S. Kumar, ISIJ Int. 41, 1437 (2001)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vipul Kumar Gupta.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, V.K., Jha, P.K. & Jain, P.K. Numerical Investigation on Gas Bubbling Assisted Inclusion Transport and Removal in Multistrand Tundish. Met. Mater. Int. 28, 2146–2165 (2022). https://doi.org/10.1007/s12540-021-01124-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-021-01124-1

Keywords

Navigation